Research Article
BibTex RIS Cite

BOR KATKILI GRAFEN OKSİT ÇÖZELTİLERİN EL ALETLERİNİN STERİLİZASYONUNDA ANTİBAKTERİYEL ETKİSİ

Year 2024, , 365 - 376, 30.06.2024
https://doi.org/10.21923/jesd.1474391

Abstract

Tıp ve diş hekimliğinde hem hasta hem sağlık personeli açısından sterilizasyon işlemi hayati derecede önem taşımaktadır. Özellikle cerrahi müdahalelerde kullanılmakta olan aletler üzerinde cerrahi müdahale sonucunda birtakım mikroorganizmalar yer alır. Tıbbi ekipman uygun şekilde dezenfekte veya sterilize edilmediğinde, konak bariyerlerinin ihlali nedeniyle enfeksiyon riskini artırmaktadır.
Bu çalışmada dental el aletlerinin temizlenmesinde kullanılmak üzere bor katkılı grafen oksit (BGO) sterilizasyon ön işlem solüsyonu üretildi. Bor kaynağı olarak bor oksit (B2O3) ve borik asit (H3BO3) kullanıldı. Grafen oksit (GO) Modifiye Geliştirilmiş Hummers Metodu ile sodyum nitrat (NaNO3) kullanılmadan sentezlendi.
BGO kompozitlerinin karakterizasyonu XRD, SEM/EDS ve FTIR analizleri kullanılarak yapıldı. Yapılan analizler sonucunda elde edilen SEM görüntüleri, XRD analizinde GO, H3BO3 ve B2O3’e ait karakteristik piklerin varlığı ve FTIR analizinde H3BO3/GO (GBA) ve B2O3/GO (GBO) yapılarında B-C ve B-O bağlarının görülmesi GO yapısında bor varlığını doğrulamıştır.
BGO solüsyonunun antibakteriyel etkinliği agar kuyucuk difüzyon yöntemi ile Gram pozitif (Staphylococcus aureus) ve Gram negatif (Escherichia coli) bakteriler için ölçülmüştür. Belirlenen konsantrasyonda kullanılan muadil solüsyon, GBA ve GBO çözeltilerinin antibakteriyel etki göstermediği gözlenmiştir. GBA ve GBO sterilizasyon ön işlem solüsyonlarının temizlik veriminin de muadil ürünle benzer olması ham madde açısından sürdürülebilir ve çevre dostu solüsyonların sterilizasyon ön işleminde alternatif olabileceğini göstermiştir.

Supporting Institution

Tübitak

Project Number

2209/A 1919B011903903

Thanks

Bu araştırma, TÜBİTAK Üniversitesi Öğrenci Araştırma Projeleri Desteği tarafından 2209/A 1919B011903903 nolu proje kapsamında desteklenmiştir.

References

  • Agnoli, S., Favaro, M., 2016. Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. Journal of Materials Chemistry A, 4, 5002-5025.
  • Albuz, O., Dulger, D., Tunali, B.Ç., Aydin, F., Yalcin, S., Turk, M., 2019. Effects of B2O3 (boron trioxide) on colon cancer cells: our first-step experience and in vitro results. Turkish journal of biology, 43 (3), 209-223.
  • AL-Taie, M.H., Chyad, F.A., AlaaJaber, H., 2014. An Experimental Investigation of B4C Preparation from Boric Acid–Polymeric Gel Precursors at Low Temperature. Iraqi journal of mechanical and material engineering, 14 (4), 408-422.
  • Cakmak, A., Ozcan, H., 2022. Bor oksit nanoparçacıklarının dizel yakıt katkısı olarak kullanılabilirliğinin araştırılması. Journal Of Boron, 7 (1), 420 – 429.
  • Demirci, S., Dogan, A., Karakus, E., Halici, Z., Topcu, A., Demirci, E., Sahin, F., 2015. Boron and Poloxamer (F68 and F127) Containing Hydrogel Formulation for Burn Wound Healing. Biological Trace Element Research, 168 (1), 169–180.
  • Dimiev, A.M., Eigler, S., 2017. Graphene Oxide: Fundamentals and Applications (Eds.), John Wiley & Sons, ISBN: 978-1-119-06940-9.
  • Erbil, H., 2005. Yıkayıcı-Dezenfektörler ile Temizleme-Dezenfeksiyon İşlemleri. 4. Uluslararası Sterilizasyon Dezenfeksiyon Kongresi, 323-334.
  • Eseceli, H., Aydın, T., Gönen, B., 2018. Bor'un İnsan Sağlığı ve Beslenme Üzerine Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 9 (2), 119-122.
  • Goenka, S., Sant, V., Sant, S. 2014. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release. Elsevier B.V., 173 (1), 75–88.
  • Ilhan, Z., Ekin, İ.H., Gulaydın, Ö., 2019. Borik Asit Solüsyonunun Listeria monocytogenes ve Staphylococcus aureus’a Karşı Antimikrobiyel Etkisi. Van Veterinary Journal, 30 (3), 163-166.
  • Kapukaya, R., Kulahci, O., 2020. Doku Defektine Sahip Yaraların Borik Asit İçeren Poliüretan Süngerle Tedavisi. Journal Of Boron, 5 (2), 83 – 90.
  • Karaarslan, A., Ozcan, M., Ozcan, M., 2005. The Efficacy of Boric Acid in Otomycosis: An in Vitro Study. The Mediterranean Journal of Otology, 2, 1-4.
  • Lee, J., Kim, J., Kim, S., Min, D., 2016. Biosensors based on graphene oxide and its biomedical application. Advanced Drug Delivery Reviews, 13.
  • Lehmann, D.M., Cavet, M.E., Richardson, M.E., 2010. Nonclinical safety evaluation of boric acid and a novel borate-buffered contact lens multi-purpose solution. BiotrueTM multi-purpose solution. Contact Lens & Anterior Eye, 33 (1), 24-32.
  • Lu, Y.J., Yang, H.W., Hung, S.C., Huang, C.Y., Li, S.M., Ma, C.C.M., Chen, P.Y., Tsai, H.C., Wei, K.C., Chen, J.P., 2012. Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide. International Journal of Nanomedicine, 7, 1737-1747.
  • Moon O.M., Kang B.C., Lee S.B., Boo J.H., 2004. Temperature effect on structural properties of boron oxide thin films deposited by MOCVD method. Thin Solid Films, 464, 164–169.
  • Nanda, S.S., Papaefthymiou, G.C., Yi, D.K. 2015. Functionalization of Graphene Oxide and its Biomedical Applications. Critical Reviews in Solid State and Materials Sciences, 40(5), 291–315.
  • Ojha, P.K., Maji, R., Karmakar, S., 2018. Effect of crystallinity on droplet regression and disruptive burning characteristics of nanofuel droplets containing amorphous and crystalline boron nanoparticles. Combustion and Flame, 188, 412–427.
  • Rani, P., Jindal, V.K., 2013. Designing band gap of graphene by B and N dopant atoms. The Royal Society of Chemistry, 3, 802-812.
  • Ray, S.C., 2015. Applications of Graphene and Graphene-Oxide Based Nanomaterials. Applications of Graphene and Graphene-Oxide Based Nanomaterials, 57-84.
  • Renders, D.P., Ersoz, G., Ozinel, M.A., Metin, D.Y., 2019. 11. Uluslararası Sterilizasyon Dezenfeksiyon Kongresi - Kongre Kitabı (Eds.). DAS, Türkiye, 166s. ISBN: 978-605-80145-1-0
  • Saglam, M., Arslan, U., Bozkurt, S.B., Hakki, S.S., 2013. Boric Acid Irrigation as an Adjunct to Mechanical Periodontal Therapy in Patients With Chronic Periodontitis: A Randomized Clinical Trial. Journal of Periodontology, 84 (9), 1297–1308.
  • Sahoo, M., Sreena, K.P., Vinayan, B.P., Ramaprabhu, S., 2015. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery. Materials Research Bulletin, 61, 383-390.
  • Samastı, M., Saltoğlu, N., Öztürk, R., 2008. Hastanelerde Dezenfeksiyon: Kullanım Esasları, Yapılan Hatalar. Hastane Enfeksiyonları, 143-168.
  • Sankaran, M., Viswanathan, B., 2007. Hydrogen storage in boron substituted carbon nanotubes. Carbon, 45, 1628-1635.
  • Shao, J.J., Lv, W., Yang, Q.H., 2014. Self-assembly of graphene oxide at interfaces. Advanced Materials, 26 (32), 5586-5612.
  • Sun, N., Yin, S., Lu, Y., Zhang, W., Jiang, X., 2020. Graphene oxide-coated porous titanium for pulp sealing: an antibacterial and dentino-inductive restorative material. Journal of Materials Chemistry B, 8, 5606-5619.
  • Truong, V.T.T., Kumar, S.R., Pang, J.H.S., Liu, Y.K., Chen, D.W., Lue, S.J., 2020. Synergistic Antibacterial Activity of Silver-Loaded Graphene Oxide towards Staphylococcus Aureus and Escherichia Coli. Nanomaterials, 10 (2), 366.
  • Turkaslan, S.S., Ugur S.S., Turkaslan B.E., Fantuzzi N. 2022. Evaluating the X-ray-Shielding Performance of Graphene-Oxide-Coated Nanocomposite Fabric. Materials, 15 (4), 1441.
  • Vries, J., 2014. Sterılızatıon Guıdelınes. International Committee of the Red Cross (ICRC).
  • Wang Y., Wang C., Wang Y., Liu H., Huang Z., 2016. Boric acid assisted reduction of graphene oxide: A promising material for sodium ion batteries. ACS Applied Materials and Interfaces, 8 (29), 18860-18866.
  • World Health Organization (WHO), Pan American Health Organization (PAN), 2016. Decontamination and Reprocessing of Medical Devices for Health-care Facilities. World Health Organization and Pan American Health Organization, ISBN 978-92-4-154985-1.
  • Xue, Y., Yu, D., Dai, L., Wang, R., Li, D., Roy, A., Lu, F., Chen, H., Liu, Y., Qu, J., 2013. Threedimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Physical Chemistry Chemical Physics, 15 (29), 12220-12226.
  • Yılmaz, M.A., 2009. Amonyum Pentaborat Oktahidratın Akışkan Yatakta Kalsinasyonu İle Bor Oksit Üretimi. Yüksek Lisans Tezi, Harran Üniversitesi, Fen Bilimleri Enstitüsü, 84s, Şanlıurfa.
  • Yilmaz M.T., 2012. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turk J. Med. Sci., 42,1423– 1429.
  • Zan, R., Alici, O., Hubbezoglu, I., Ozdemir, A. K., Tunç, T., Sumer, Z., 2013. Antibacterial Effect of Different Concentration of Boric acid against Enterococcus Faecalis Biofilms in Root Canal. Marmara Dental Journal, 2, 76-80.
  • Zer, Y., Karabacak, F.N., Manay A.B., 2020. Borik asitin dezenfektan etkinliğinin araştırılması. Turkish Journal of Hygiene and Experimental Biology, 79 (1), 145–152.
  • Zhang, R., Xie, Y., Song, J., Xing L., Kong, D., Li, X.M., He, T., 2016. Extraction of boron from salt lake brine using 2-ethylhexanol. Hydrometallurgy, 160, 129– 136.
  • Zhang, W., Liu, T., Xu, J., 2012. Preparation and characterization of 10B boric acid with high purity for nuclear industry. Springer Plus, 5, 1202-1211.

ANTIBACTERIAL EFFECT OF BORON-DOPPED GRAPHENE OXIDE SOLUTIONS ON STERILIZATION OF HAND TOOLS

Year 2024, , 365 - 376, 30.06.2024
https://doi.org/10.21923/jesd.1474391

Abstract

In medicine and dentistry, sterilization is mandatory for the benefit for both patients and healthcare personnel. Especially on instruments used in surgical interventions, some microorganisms take place as a result of surgical intervention. When medical equipment is not properly disinfected or sterilized, it increases the risk of infection due to breach of host barriers.
In this study, boron doped graphene oxide (BGO) sterilization pre-treatment solution was produced in order to clean dental hand instrument. Boron oxide (B2O3) and boric acid (H3BO3) and will be used as a boron source. Graphene oxide (GO) was synthesized by the Modified Improved Hummers method without using sodium nitrate (NaNO3).
BGO composites was characterized using XRD, SEM/EDS, and FTIR analyses. The SEM images obtained as a result of the analyzes, the presence of characteristic peaks of GO, H3BO3 and B2O3 in the XRD analysis, and the presence of B-C and B-O bonds in the H3BO3/GO (GBA) and B2O3/GO (GBO) structures in the FTIR analysis confirmed the presence of boron in the GO structure.
The antibacterial activity of BGO solution was measured for Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria by the agar well diffusion method. It has been observed that the equivalent solutions used in the industry, GBA and GBO solutions, do not have an antibacterial effect at the determined concentration. The cleaning efficiency of GBA and GBO sterilization pre-treatment solutions is similar to the equivalent product, and it has been observed that sustainable and environmentally friendly solutions in terms of raw materials can be an alternative in sterilization pre-treatment.

Project Number

2209/A 1919B011903903

References

  • Agnoli, S., Favaro, M., 2016. Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. Journal of Materials Chemistry A, 4, 5002-5025.
  • Albuz, O., Dulger, D., Tunali, B.Ç., Aydin, F., Yalcin, S., Turk, M., 2019. Effects of B2O3 (boron trioxide) on colon cancer cells: our first-step experience and in vitro results. Turkish journal of biology, 43 (3), 209-223.
  • AL-Taie, M.H., Chyad, F.A., AlaaJaber, H., 2014. An Experimental Investigation of B4C Preparation from Boric Acid–Polymeric Gel Precursors at Low Temperature. Iraqi journal of mechanical and material engineering, 14 (4), 408-422.
  • Cakmak, A., Ozcan, H., 2022. Bor oksit nanoparçacıklarının dizel yakıt katkısı olarak kullanılabilirliğinin araştırılması. Journal Of Boron, 7 (1), 420 – 429.
  • Demirci, S., Dogan, A., Karakus, E., Halici, Z., Topcu, A., Demirci, E., Sahin, F., 2015. Boron and Poloxamer (F68 and F127) Containing Hydrogel Formulation for Burn Wound Healing. Biological Trace Element Research, 168 (1), 169–180.
  • Dimiev, A.M., Eigler, S., 2017. Graphene Oxide: Fundamentals and Applications (Eds.), John Wiley & Sons, ISBN: 978-1-119-06940-9.
  • Erbil, H., 2005. Yıkayıcı-Dezenfektörler ile Temizleme-Dezenfeksiyon İşlemleri. 4. Uluslararası Sterilizasyon Dezenfeksiyon Kongresi, 323-334.
  • Eseceli, H., Aydın, T., Gönen, B., 2018. Bor'un İnsan Sağlığı ve Beslenme Üzerine Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 9 (2), 119-122.
  • Goenka, S., Sant, V., Sant, S. 2014. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release. Elsevier B.V., 173 (1), 75–88.
  • Ilhan, Z., Ekin, İ.H., Gulaydın, Ö., 2019. Borik Asit Solüsyonunun Listeria monocytogenes ve Staphylococcus aureus’a Karşı Antimikrobiyel Etkisi. Van Veterinary Journal, 30 (3), 163-166.
  • Kapukaya, R., Kulahci, O., 2020. Doku Defektine Sahip Yaraların Borik Asit İçeren Poliüretan Süngerle Tedavisi. Journal Of Boron, 5 (2), 83 – 90.
  • Karaarslan, A., Ozcan, M., Ozcan, M., 2005. The Efficacy of Boric Acid in Otomycosis: An in Vitro Study. The Mediterranean Journal of Otology, 2, 1-4.
  • Lee, J., Kim, J., Kim, S., Min, D., 2016. Biosensors based on graphene oxide and its biomedical application. Advanced Drug Delivery Reviews, 13.
  • Lehmann, D.M., Cavet, M.E., Richardson, M.E., 2010. Nonclinical safety evaluation of boric acid and a novel borate-buffered contact lens multi-purpose solution. BiotrueTM multi-purpose solution. Contact Lens & Anterior Eye, 33 (1), 24-32.
  • Lu, Y.J., Yang, H.W., Hung, S.C., Huang, C.Y., Li, S.M., Ma, C.C.M., Chen, P.Y., Tsai, H.C., Wei, K.C., Chen, J.P., 2012. Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide. International Journal of Nanomedicine, 7, 1737-1747.
  • Moon O.M., Kang B.C., Lee S.B., Boo J.H., 2004. Temperature effect on structural properties of boron oxide thin films deposited by MOCVD method. Thin Solid Films, 464, 164–169.
  • Nanda, S.S., Papaefthymiou, G.C., Yi, D.K. 2015. Functionalization of Graphene Oxide and its Biomedical Applications. Critical Reviews in Solid State and Materials Sciences, 40(5), 291–315.
  • Ojha, P.K., Maji, R., Karmakar, S., 2018. Effect of crystallinity on droplet regression and disruptive burning characteristics of nanofuel droplets containing amorphous and crystalline boron nanoparticles. Combustion and Flame, 188, 412–427.
  • Rani, P., Jindal, V.K., 2013. Designing band gap of graphene by B and N dopant atoms. The Royal Society of Chemistry, 3, 802-812.
  • Ray, S.C., 2015. Applications of Graphene and Graphene-Oxide Based Nanomaterials. Applications of Graphene and Graphene-Oxide Based Nanomaterials, 57-84.
  • Renders, D.P., Ersoz, G., Ozinel, M.A., Metin, D.Y., 2019. 11. Uluslararası Sterilizasyon Dezenfeksiyon Kongresi - Kongre Kitabı (Eds.). DAS, Türkiye, 166s. ISBN: 978-605-80145-1-0
  • Saglam, M., Arslan, U., Bozkurt, S.B., Hakki, S.S., 2013. Boric Acid Irrigation as an Adjunct to Mechanical Periodontal Therapy in Patients With Chronic Periodontitis: A Randomized Clinical Trial. Journal of Periodontology, 84 (9), 1297–1308.
  • Sahoo, M., Sreena, K.P., Vinayan, B.P., Ramaprabhu, S., 2015. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery. Materials Research Bulletin, 61, 383-390.
  • Samastı, M., Saltoğlu, N., Öztürk, R., 2008. Hastanelerde Dezenfeksiyon: Kullanım Esasları, Yapılan Hatalar. Hastane Enfeksiyonları, 143-168.
  • Sankaran, M., Viswanathan, B., 2007. Hydrogen storage in boron substituted carbon nanotubes. Carbon, 45, 1628-1635.
  • Shao, J.J., Lv, W., Yang, Q.H., 2014. Self-assembly of graphene oxide at interfaces. Advanced Materials, 26 (32), 5586-5612.
  • Sun, N., Yin, S., Lu, Y., Zhang, W., Jiang, X., 2020. Graphene oxide-coated porous titanium for pulp sealing: an antibacterial and dentino-inductive restorative material. Journal of Materials Chemistry B, 8, 5606-5619.
  • Truong, V.T.T., Kumar, S.R., Pang, J.H.S., Liu, Y.K., Chen, D.W., Lue, S.J., 2020. Synergistic Antibacterial Activity of Silver-Loaded Graphene Oxide towards Staphylococcus Aureus and Escherichia Coli. Nanomaterials, 10 (2), 366.
  • Turkaslan, S.S., Ugur S.S., Turkaslan B.E., Fantuzzi N. 2022. Evaluating the X-ray-Shielding Performance of Graphene-Oxide-Coated Nanocomposite Fabric. Materials, 15 (4), 1441.
  • Vries, J., 2014. Sterılızatıon Guıdelınes. International Committee of the Red Cross (ICRC).
  • Wang Y., Wang C., Wang Y., Liu H., Huang Z., 2016. Boric acid assisted reduction of graphene oxide: A promising material for sodium ion batteries. ACS Applied Materials and Interfaces, 8 (29), 18860-18866.
  • World Health Organization (WHO), Pan American Health Organization (PAN), 2016. Decontamination and Reprocessing of Medical Devices for Health-care Facilities. World Health Organization and Pan American Health Organization, ISBN 978-92-4-154985-1.
  • Xue, Y., Yu, D., Dai, L., Wang, R., Li, D., Roy, A., Lu, F., Chen, H., Liu, Y., Qu, J., 2013. Threedimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Physical Chemistry Chemical Physics, 15 (29), 12220-12226.
  • Yılmaz, M.A., 2009. Amonyum Pentaborat Oktahidratın Akışkan Yatakta Kalsinasyonu İle Bor Oksit Üretimi. Yüksek Lisans Tezi, Harran Üniversitesi, Fen Bilimleri Enstitüsü, 84s, Şanlıurfa.
  • Yilmaz M.T., 2012. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turk J. Med. Sci., 42,1423– 1429.
  • Zan, R., Alici, O., Hubbezoglu, I., Ozdemir, A. K., Tunç, T., Sumer, Z., 2013. Antibacterial Effect of Different Concentration of Boric acid against Enterococcus Faecalis Biofilms in Root Canal. Marmara Dental Journal, 2, 76-80.
  • Zer, Y., Karabacak, F.N., Manay A.B., 2020. Borik asitin dezenfektan etkinliğinin araştırılması. Turkish Journal of Hygiene and Experimental Biology, 79 (1), 145–152.
  • Zhang, R., Xie, Y., Song, J., Xing L., Kong, D., Li, X.M., He, T., 2016. Extraction of boron from salt lake brine using 2-ethylhexanol. Hydrometallurgy, 160, 129– 136.
  • Zhang, W., Liu, T., Xu, J., 2012. Preparation and characterization of 10B boric acid with high purity for nuclear industry. Springer Plus, 5, 1202-1211.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Materials Science and Technologies
Journal Section Research Articles
Authors

Ayça Dalbeyler 0000-0003-2190-9507

Banu Esencan Türkaslan 0000-0003-3948-6207

Project Number 2209/A 1919B011903903
Publication Date June 30, 2024
Submission Date April 27, 2024
Acceptance Date May 22, 2024
Published in Issue Year 2024

Cite

APA Dalbeyler, A., & Esencan Türkaslan, B. (2024). BOR KATKILI GRAFEN OKSİT ÇÖZELTİLERİN EL ALETLERİNİN STERİLİZASYONUNDA ANTİBAKTERİYEL ETKİSİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(2), 365-376. https://doi.org/10.21923/jesd.1474391