Research Article
BibTex RIS Cite

KOCAELİ İZMİT İLÇESİ’NDE PARTİKÜL MADDE (PM2.5) KONSANTRASYON SEVİYELERİ, MEKÂNSAL VE MEVSİMSEL DEĞERLENDİRİLMESİ

Year 2021, , 809 - 821, 21.09.2021
https://doi.org/10.21923/jesd.888896

Abstract

İzmit İlçesi’nde yaz (Temmuz 2018 - Eylül 2018) ve kış mevsimlerinde (Kasım 2018 - Ocak 2019) yüksek hacimli örnekleyici kullanılarak partikül madde (PM2.5) derişimleri ölçülmüştür. Mekânsal dağılımdaki farklılığı belirlemek için 14 noktada numune toplanmıştır. PM2.5 numuneleri, 24 saat boyunca 1,13 m3/dk bir akış hızında kuvars filtre kağıdı kullanılarak toplanmıştır. 14 örnekleme noktası için yaz ve kış mevsimleri ortalama PM2.5 konsantrasyonu sırasıyla 22,11 ± 4,30 µg/m3 ve 45,44 ± 18,71 µg/m3 olarak ölçülmüştür. PM2.5 en yüksek ve en düşük konsantrasyonlarına kış aylarında rastlanmıştır. Kış aylarında Sepetçiler, Yeşilova, 28 Haziran, Kabaoğlu örnekleme alanlarında ölçülen konsantrasyonların yaz aylarında ölçülen konsantrasyonlardan düşük olduğu belirlenmiştir. Mekânsal dağılıma göre 28 Haziran Mahallesi’nde en düşük kirlilik gözlemlenirken, Cedit Mahallesi’nde ve Sanayi Mahallesi’nde en yüksek kirlilik gözlemlenmiştir. Bu bölgelerin, kentsel ve trafik kaynaklı diğer bölgelere göre farklı kirlilik kaynaklarından etkilendiği belirlenmiştir. K/Y oranı 28 Haziran Mahallesi, Yeşilova Mahallesi ve Sepetçiler Mahallesi’nde toprak kaynağı nedeniyle 1‘in altında, Kabaoğlu Mahallesi’nde 1 ve diğer örnekleme alanlarında ısıtma amaçlı fosil yakıt kullanımına bağlı 1’in üzerinde olduğu belirlenmiştir.

Supporting Institution

TTO-Kocaeli Büyükşehir Belediyesi ve Kocaeli Üniversitesi BAP Birimi

Project Number

2018/103

Thanks

Bu çalışmayı “Kocaeli ili İzmit ilçesi 238217E-421487N, 246070E-4515849N Koordinatları Arasında Yer Alan Sahada Kentsel Yaşam Kalitesi (KYK)’nın Ölçülmesi(2018-01.08.2019)” projesi ile destekleyen TTO-Kocaeli Büyükşehir Belediyesine, 2018/103 no’lu “İzmit Atmosferinde Partiküldeki Poliaromatik Hidrokarbonların Mekânsal Dağılımı, Sağlık Riski ve Kaynak Tahmini” projesi ile destekleyen Kocaeli Üniversitesi BAP birimine teşekkür ederiz.

References

  • Agacayak, T., Kindap, T., Unal, A., Pozzoli, L., Mallet, M., Solmon, F., 2015. A case study for Saharan dust transport over Turkey via RegCM4.1 model. Atmospheric Research, 153, 392–403.
  • Akyüz, M., Çabuk, H., 2008. Particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Science of the Total Environment, 405, 62–70.
  • Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., Santamaría, J. M. 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmospheric Research, 102(1–2), 191–205.
  • Bayraktar, H., Turalioǧlu, F. S., Tuncel, G., 2010. Average mass concentrations of TSP, PM10 and PM2.5 in Erzurum urban atmosphere, Turkey. Stochastic Environmental Research and Risk Assessment, 24(1), 57–65.
  • Boogaard, H., Kos, G. P. A., Weijers, E. P., Janssen, N. A. H., Fischer, P. H., Zee, S. C. Van Der, Hartog, J. J. De, Hoek, G., 2011. Contrast in air pollution components between major streets and background locations: Particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultra fine particle number. Atmospheric Environment, 45(3), 650–658.
  • Bozkurt, Z., 2018. PM10 ve PM2.5 boyutundaki atmosferik partiküllerin bölgesel, mevsimsel değişimlerinin ve meteorolojik parametrelerle ilişkilerinin incelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4, 293–304.
  • Choi, J., Heo, J., Ban, S., Yi, S., Zoh, K., 2013. Source apportionment of PM2.5 at the coastal area in Korea. Science of the Total Environment, 447, 370–380.
  • Dursun, Ş., 2017. Selçuk Üniversitesi yerleşkesi açık alanlarda ortam PM2.5 seviyesinin belirlenmesi. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 1-3 Kasım, Antalya, 190–202.
  • EEA-European Environment Agency Report, 2020. Air Quality in Europe: 2020 report. https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report.
  • Eeftens, M., Tsai, M. Y., Ampe, C., Anwander, B., Beelen, R., Bellander, T., Cesaroni, G., …, Hoek, G., 2012. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 - Results of the ESCAPE project. Atmospheric Environment, 62, 303–317.
  • Gaga, E. O., Arı, A., Akyol, N., Üzmez, Ö. Ö., Kara, M., Chow, J. C., Watson, J. G., Özel, E., Döğeroğlu, T., Odabasi, M., 2018. Determination of real-world emission factors of trace metals, EC, OC, BTEX, and semivolatile organic compounds (PAHs, PCBs and PCNs) in a rural tunnel in Bilecik, Turkey. Science of the Total Environment, 643, 1285–1296.
  • Gaga, E. O., Döğeroğlu, T., Özden, Ö., Ari, A., Yay, O. D., Altuğ, H., Akyol, N., Örnektekin, S., Van Doorn, W., 2012. Evaluation of air quality by passive and active sampling in an urban city in Turkey: Current status and spatial analysis of air pollution exposure. Environmental Science and Pollution Research, 19(8), 3579–3596.
  • Gehrig, R., Buchmann, B., 2003. Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmospheric Environment, 37, 2571-2580.
  • Gibson, M. D., Duck, T. J., Beauchamp, S., Canada, E., King, G. H., 2013. Identifying the sources driving observed PM2.5 temporal variability over Halifax , Nova Scotia , during BORTAS-B. Atmospheric Chemistry and Physics, 13, 7199-7213.
  • Gül, İ., 2020. Tekirdağ İli 2014-2016 Yılları Arasında Dış Ortam Hava Kalitesinin Değerlendirilmesi. Balıkesir Medical Journal, 4(1), 37–40.
  • Han, F., Harsha, S., Wang, Y., Zhang, H., 2017. Source apportionment of PM2.5 in Baton Rouge, Louisiana during 2009 – 2014. Science of the Total Environment, 586, 115–26.
  • Harrison, R. M., Bousiotis, D., Mohorjy, A. M., Alkhalaf, A. K., Shamy, M., Alghamdi, M., Khoder, M., Costa, M., 2017. Health risk associated with airborne particulate matter and its components in Jeddah, Saudi Arabia. Science of the Total Environment, 590–591, 531–39.
  • Huang, W., Long, E., Wang, J., Huang, R., Ma, L., 2015. Characterizing spatial distribution and temporal variation of PM10 and PM2.5 mass concentrations in an urban area of Southwest China. Atmospheric Pollution Research, 6 (5), 842–48.
  • İmal, M., Karapınar, Ç., Doğan, O. 2013. Hava Kalitesine Doğalgazın Etkisi : Kahramanmaraş Örnek Çalışması. KSU Mühendislik Bilimleri Dergisi, 16 (2), 22–28.
  • Kabatas, B., Unal, A., Pierce, R. B., Kindap, T., Pozzoli, L., 2014. The contribution of Saharan dust in PM10 concentration levels in Anatolian Peninsula of Turkey. Science of the Total Environment, 489, 413–421.
  • Kalisa, E., Nagato, E., Bizuru, E., Lee, K., Tang, N., Pointing, S., Hayakawa, K., Archer, S., Lacap-bugler, D., 2019. Pollution characteristics and risk assessment of ambient PM2.5-bound PAHs and NPAHs in typical Japanese and New Zealand cities and rural sites. Atmospheric Pollution Research, 10 (5), 1396–1403.
  • Karacı, A., 2018. Akıllı Şehir Hava Takip Sistemi ve Astım Hastaları için PM2.5 Konsantrasyonu Ölçüm Aracının Geliştirilmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 6 (3), 418-425.
  • Kara, M., Hopke, P. K., Dumanoglu, Y., Altiok, H., Elbir, T., Odabasi, M., Bayram, A., 2015. Characterization of PM using multiple site data in a heavily industrialized region of Turkey. Aerosol and Air Quality Research, 15(1), 11–27.
  • Karakavuz, E., Yıldırım Y., 2017. Zonguldak Kentsel Atmosferinde Partikül Madde Boyut Dağılımı. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 1-3 Kasım, Antalya, 180–189.
  • Karnae, S., John, K., 2019. Source apportionment of PM2.5 measured in South Texas near U.S.A. – Mexico border. Atmospheric Pollution Research, 10 (5), 1663–1676.
  • Kendall, M., Pala, K., Ucakli, S., Gucer, S., 2011. Airborne particulate matter (PM2.5 and PM10) and associated metals in urban Turkey. Air Quality, Atmosphere and Health, 4 (3), 235–42.
  • KGM-Karayolları Genel Müdürlüğü, 2020. 2019 Trafik ve Ulaşım Bilgileri: Otoyollar ve Devlet Yollarının Trafik Dilimlerine göre Yıllık Ortalama Günlük Trafik Değerleri ve Ulaşım Bilgileri. Trafik Güvenliği Dairesi Başkanlığı Ulaşım Etütleri Şubesi Müdürlüğü. https://www.kgm.gov.tr/SiteCollectionDocuments/KGMdocuments/Istatistikler/TrafikveUlasimBilgileri/19TrafikUlasimBilgileri.pdf.
  • KGM-Karayolları Genel Müdürlüğü, 2009. Devlet Yolları Trafik Akımı Özellikleri ve Trafik Parametreleri. Strateji Geliştirme Daire Başkanlığı Ulaşım ve Maliyet Etütleri Şubesi Müdürlüğü, https://www.kgm.gov.tr/SiteCollectionDocuments/KGMdocuments/Yayinlar/YayinPdf/Devlet%20Yollar%C4%B1%20Trafik%20Ak%C4%B1m%C4%B1%20%C3%96zellikleri%20ve%20Trafik%20Parametreleri.pdf.
  • Khodeir, M., Shamy, M., Alghamdi, M., Zhong, M., Sun, H., Costa, M., Chen, L. C., Maciejczyk, P., 2012. Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmospheric Pollution Research, 3 (3), 331–40.
  • Kim, S., Kim, T., Yi, S., Heo, J., 2018. Source apportionment of PM2.5 using positive matrix factorization (PMF) at a rural site in Korea. Journal of Environmental Management, 214, 325–34.
  • Koçak, M., Mihalopoulos, N., Kubilay, N., 2007. Contributions of natural sources to high PM10 and PM2.5 events in the eastern Mediterranean. Atmospheric Environment, 41, 3806–3818.
  • Koçak, E., 2018. Aksaray Kentinin PM10 ve SO2 Konsantrasyonlarının zamansal değişimi: Koşullu İki Değişkenli Olasılık Fonksiyonu ve K-Means Kümeleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6(3), 471-478.
  • Ledoux, F., Kfoury, A., Delmaire, G., Roussel, G., El Zein, A., Courcot, D., 2017. Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere, 181, 713–24.
  • MGM-Meteoroloji Genel Müdürlüğü, 2020. “Resmi İstatistikler”. Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü. https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=KOCAELI.
  • Miranda, R. M., Fatima Andrade, M., Fornaro, A., Astolfo, R., Andre, P. A., Saldiva, P., 2012. Urban air pollution: A representative survey of PM 2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere and Health, 5 (1), 63–77.
  • Mohammed, G., Karani, G., Mitchell, D., 2017. Trace Elemental Composition in PM10 and PM2.5 Collected in Cardiff, Wales. Energy Procedia, 111, 540–47.
  • Onat, B., Sahin, U. A., Akyuz, T., 2013. Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul, Turkey. Atmospheric Pollution Research, 4 (1), 101–5.
  • Owoade, K. O., Hopke, P. K., Olise, F. S., Adewole, O. O., Ogundele, L. T., Fawole, O. G., 2016. Source apportionment analyses for fine (PM2.5) and coarse (PM2.5-10) mode particulate matter (PM) measured in an urban area in southwestern Nigeria. Atmospheric Pollution Research, 7(5), 843–857.
  • Özdemir, H., Borucu, G., Demir, G., Yiǧit, S., Namik, A. K., 2010. Examining the particulate matter (PM2.5 ve PM10) pollution on the playgrounds in Istanbul. Ekoloji, 79 (77), 72–79.
  • Pekey, B., Bozkurt, Z. B., Pekey, H., Doğan, G., Zararsız, A., Efe, N., Tuncel, G., 2010. Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli City, Turkey. Indoor Air, 20 (2), 112–25.
  • Pekey, H., Pekey, B., Arslanbaş, D., Bozkurt, Z., Doğan, G., Tuncel, G., 2015. Türkiye’de endüstriyel ve Şehirleşmiş bir alanda uçucu organik bileşik ve partikül madde kaynaklarının tanımlaması. Ekoloji, 24 (94), 1–9.
  • Pérez, N., Pey, J., Reche, C., Cortés, J., Alastuey, A., Querol, X., 2016. Impact of harbour emissions on ambient PM10 and PM2.5 in Barcelona (Spain): Evidences of secondary aerosol formation within the urban area. Science of the Total Environment, 571, 237–250.
  • Perrone, M.R., Vecchi, R., Romano, S., Becagli, S., Traversi, R., Paladini, F., 2019. Weekly cycle assessment of PM mass concentrations and sources, and impacts on temperature and wind speed in Southern Italy. Atmospheric Research, 218, 129–44.
  • Pipal, A.S., Gursumeeran Satsangi, P., 2015. Study of carbonaceous species, morphology and sources of fine (PM2.5) and coarse (PM10) particles along with their climatic nature in India. Atmospheric Research, 154, 103–15.
  • Rengarajan, R., Sudheer, A. K., Sarin, M. M., 2011. Wintertime PM2.5 and PM10 carbonaceous and inorganic constituents from urban site in western India. Atmospheric Research, 102 (4), 420–31.
  • Saliba, N.A., El Jam, F., El Tayar, G., Obeid, W., Roumie, M., 2010. Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city. Atmospheric Research, 97 (1–2), 106–14.
  • Shahid, I., Kistler, M., Mukhtar, A., Ghauri, B.M., Cruz, C.R., Bauer, H., Puxbaum, H., 2016. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi-Pakistan. Atmospheric Environment, 128, 114–23.
  • Spindler, G., Brüggemann, G., Gnauk, T., Grüner, A., Müller, K., Herrmann, H., 2010. A four-year size-segregated characterization study of particles PM10, PM2.5 and PM 1 depending on air mass origin at Melpitz. Atmospheric Environment, 44, 164–73.
  • Szigeti, T., Mihucz, V.G., Óvári, M., Baysal, A., Atilgan, S., Akman, S., Záray, G., 2013. Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Microchemical Journal, 107, 86–94.
  • Şahin, Ü.A., Scherbakova, K., Onat, B., 2012. Size distribution and seasonal variation of airborne particulate matter in five areas in Istanbul, Turkey. Environmental Science and Pollution Research. 19 (4), 1198–1209.
  • Şengün, M.T., Kıranşan, K., 2012. The Effects of Desert Dusts on Natural and Human Environment in Turkey. Fırat Üniversitesi Sosyal Bilimler Dergisi, 22 (2), 1–15.
  • Tecer, L.H., Fıçıcı, M., Sofuoğlu, S., Özmetin, C., 2017. Kent (çorlu) ve sanayi (çerkezköy) bölgesi atmosferlerinde PM kütle konsantrasyonlarının değişiminin incelenmesi. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 1-3 Kasım, Antalya, 795–802.
  • Tepe, A.M., Doğan, G., 2019. Türkiye'nin Güney Sahilinde Yer Alan Dört Şehrin Hava Kalitelerinin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(3), 585-595.
  • Tiwari, S., Hopke, P.K., Pipal, A.S., Srivastava, A.K., Bisht, D.S., Tiwari, S., Singh, A.K., Soni, V.K., Attri, S.D., 2015. Intra-urban variability of particulate matter (PM2.5 and PM10) and its relationship with optical properties of aerosols over Delhi, India. Atmospheric Research, 166, 223–32.
  • TMMOB-Türk Mühendis ve Mimar Odaları Birliği, 2019. Hava Kirliliği Raporu 2019. Çevre Mühendisleri Odası. http://www.tmmob.org.tr/sites/default/files/2019.pdf.
  • Trusz, A., Ghazal, H., Piekarska, H., 2020. Seasonal variability of chemical composition and mutagenic effect of organic PM2.5 pollutants collected in the urban area of Wrocław (Poland). Science of the Total Environment, 733, 138911.
  • USEPA, 2009. Quality Assurance Guidance Document Method Compendium. 2009. https://www.epa.gov/sites/production/files/2020-09/documents/pepqapp.pdf.
  • Wang, Q., Gu, J., Wang, X., 2020. The impact of Sahara dust on air quality and public health in European countries. Atmospheric Environment, 241, 117771.
  • Wang, Q., Liu, M., Yu, Y., Li, Y., 2016. Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai city , China. Environmental Pollution, 218, 118–28.
  • WHO, 2005. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide : global update 2005 : summary of risk assessment”. 2005. https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf.
  • Wimolwattanapun, W., Hopke, P.K., Pongkiatkul, P., 2011. Atmospheric Pollution Research PM2.5–10 at residential sites in metropolitan Bangkok. Atmospheric Pollution Research, 2 (2), 172–81.
  • Xu, G., Jiao, L., Zhang, B., Zhao, S., Yuan, M., Gu, Y., Liu, J.,Tang, X., 2017. Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China. Aerosol and Air Quality Research, 17 (3), 741–51.
  • Yalçın, F., Tepe, A. M., Doğan, G., Cızmecı, N., 2021. Spatial Regression Models for Explaining AQI Values in Cities of Turkey. Kocaeli Journal of Science and Engineering, 4 (1), 1-15.
  • Yatkin, S., Bayram, A., 2008. Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Science of the Total Environment, 390 (1), 109–23.
  • Yazıcı, H., Akçay, M., Çay, Y., Sekmen, Y., Yılmaz, İ. T., Gölcü, M., 2010. Hava kirliliğinin doğalgaz kullanımı ile değişimi, Denizli il örneği. Selçuk-Teknik Dergisi, 9(3), 205-215.
  • Yin, G., Liu, C., Hao, L., Chen, Y., Wang, W., Huo, J., Zhao, Q., 2019. Associations between size-fractionated particle number concentrations and COPD mortality in Shanghai, China. Atmospheric Environment, 214, 116875.
  • Yurdakul, S., Ayyıldız, N., Çelik, V. E., İçöz, E., 2019. Süleyman Demirel Üniversitesi Seçili Dersliklerinin İç Çevre Kalitesi Açısından İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7 (4), 811-818.
  • Yurdakul, S., Civan, M., Tuncel, G., 2013. Volatile organic compounds in suburban Ankara atmosphere , Turkey : Sources and variability. Atmospheric Research, 120–121, 298–311.
  • Zengin Kazancı, S., Tanır Kayıkçı, E., 2015. Konumsal Enterpolasyon Yöntemleri Uygulamalarında Optimum Parametre Seçimi: Doğu Karadeniz Bölgesi Günlük Ortalama Sıcaklık Verileri Örneği. 15. Türkiye Harita Bilimsel ve Teknik Kurultayı, Ankara, 25 - 28 Mart , 1-10.
  • Zeydan, Ö., Wang, Y., 2019. Using MODIS derived aerosol optical depth to estimate ground-level PM2.5 concentrations over Turkey. Atmospheric Pollution Research, 10, 1565–76.

PARTICULATE MATTER (PM2.5) CONCENTRATION LEVELS, SPATIAL AND SEASONAL EVALUATION IN KOCAELI IZMIT DISTRICT

Year 2021, , 809 - 821, 21.09.2021
https://doi.org/10.21923/jesd.888896

Abstract

Particulate matter (PM2.5) concentrations were measured by using a high volume sampler in summer (July 2018 - September 2018) and winter seasons (November 2018 - January 2019) in Izmit Country. Samples were collected at 14 points to determine the discrepancy in spatial distribution. PM2.5 samples were collected using a quartz filter at a flow rate of 1.13 m3 min-1 for 24 hours. The mean concentration of PM2.5 in the summer and winter seasons for the 14 sampling points was measured as 22.11 ± 4.30 µg m-3, 45.44 ± 18.71 µg m-3, respectively. The highest and lowest concentrations of PM2.5 were found in the winter season. It was determined that the concentrations measured in the sampling areas of Sepetçiler, Yeşilova, 28 Haziran and Kabaoğlu during the winter months are lower than the concentrations measured in the summer months. According to the spatial distribution, the lowest pollution was observed in the 28 Haziran District, while the highest pollution was observed in the Cedit District and the Sanayi District. It has been determined that these regions are affected by different sources of pollution compared to other urban and traffic-related regions. It has been determined that the K/Y ratio is below 1 in 28 Haziran District, Yeşilova District and Sepetçiler District due to soil resource, 1 in Kabaoğlu District and above 1 due to the use of fossil fuels for heating in other sampling areas.

Project Number

2018/103

References

  • Agacayak, T., Kindap, T., Unal, A., Pozzoli, L., Mallet, M., Solmon, F., 2015. A case study for Saharan dust transport over Turkey via RegCM4.1 model. Atmospheric Research, 153, 392–403.
  • Akyüz, M., Çabuk, H., 2008. Particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Science of the Total Environment, 405, 62–70.
  • Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., Santamaría, J. M. 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmospheric Research, 102(1–2), 191–205.
  • Bayraktar, H., Turalioǧlu, F. S., Tuncel, G., 2010. Average mass concentrations of TSP, PM10 and PM2.5 in Erzurum urban atmosphere, Turkey. Stochastic Environmental Research and Risk Assessment, 24(1), 57–65.
  • Boogaard, H., Kos, G. P. A., Weijers, E. P., Janssen, N. A. H., Fischer, P. H., Zee, S. C. Van Der, Hartog, J. J. De, Hoek, G., 2011. Contrast in air pollution components between major streets and background locations: Particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultra fine particle number. Atmospheric Environment, 45(3), 650–658.
  • Bozkurt, Z., 2018. PM10 ve PM2.5 boyutundaki atmosferik partiküllerin bölgesel, mevsimsel değişimlerinin ve meteorolojik parametrelerle ilişkilerinin incelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4, 293–304.
  • Choi, J., Heo, J., Ban, S., Yi, S., Zoh, K., 2013. Source apportionment of PM2.5 at the coastal area in Korea. Science of the Total Environment, 447, 370–380.
  • Dursun, Ş., 2017. Selçuk Üniversitesi yerleşkesi açık alanlarda ortam PM2.5 seviyesinin belirlenmesi. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 1-3 Kasım, Antalya, 190–202.
  • EEA-European Environment Agency Report, 2020. Air Quality in Europe: 2020 report. https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report.
  • Eeftens, M., Tsai, M. Y., Ampe, C., Anwander, B., Beelen, R., Bellander, T., Cesaroni, G., …, Hoek, G., 2012. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 - Results of the ESCAPE project. Atmospheric Environment, 62, 303–317.
  • Gaga, E. O., Arı, A., Akyol, N., Üzmez, Ö. Ö., Kara, M., Chow, J. C., Watson, J. G., Özel, E., Döğeroğlu, T., Odabasi, M., 2018. Determination of real-world emission factors of trace metals, EC, OC, BTEX, and semivolatile organic compounds (PAHs, PCBs and PCNs) in a rural tunnel in Bilecik, Turkey. Science of the Total Environment, 643, 1285–1296.
  • Gaga, E. O., Döğeroğlu, T., Özden, Ö., Ari, A., Yay, O. D., Altuğ, H., Akyol, N., Örnektekin, S., Van Doorn, W., 2012. Evaluation of air quality by passive and active sampling in an urban city in Turkey: Current status and spatial analysis of air pollution exposure. Environmental Science and Pollution Research, 19(8), 3579–3596.
  • Gehrig, R., Buchmann, B., 2003. Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmospheric Environment, 37, 2571-2580.
  • Gibson, M. D., Duck, T. J., Beauchamp, S., Canada, E., King, G. H., 2013. Identifying the sources driving observed PM2.5 temporal variability over Halifax , Nova Scotia , during BORTAS-B. Atmospheric Chemistry and Physics, 13, 7199-7213.
  • Gül, İ., 2020. Tekirdağ İli 2014-2016 Yılları Arasında Dış Ortam Hava Kalitesinin Değerlendirilmesi. Balıkesir Medical Journal, 4(1), 37–40.
  • Han, F., Harsha, S., Wang, Y., Zhang, H., 2017. Source apportionment of PM2.5 in Baton Rouge, Louisiana during 2009 – 2014. Science of the Total Environment, 586, 115–26.
  • Harrison, R. M., Bousiotis, D., Mohorjy, A. M., Alkhalaf, A. K., Shamy, M., Alghamdi, M., Khoder, M., Costa, M., 2017. Health risk associated with airborne particulate matter and its components in Jeddah, Saudi Arabia. Science of the Total Environment, 590–591, 531–39.
  • Huang, W., Long, E., Wang, J., Huang, R., Ma, L., 2015. Characterizing spatial distribution and temporal variation of PM10 and PM2.5 mass concentrations in an urban area of Southwest China. Atmospheric Pollution Research, 6 (5), 842–48.
  • İmal, M., Karapınar, Ç., Doğan, O. 2013. Hava Kalitesine Doğalgazın Etkisi : Kahramanmaraş Örnek Çalışması. KSU Mühendislik Bilimleri Dergisi, 16 (2), 22–28.
  • Kabatas, B., Unal, A., Pierce, R. B., Kindap, T., Pozzoli, L., 2014. The contribution of Saharan dust in PM10 concentration levels in Anatolian Peninsula of Turkey. Science of the Total Environment, 489, 413–421.
  • Kalisa, E., Nagato, E., Bizuru, E., Lee, K., Tang, N., Pointing, S., Hayakawa, K., Archer, S., Lacap-bugler, D., 2019. Pollution characteristics and risk assessment of ambient PM2.5-bound PAHs and NPAHs in typical Japanese and New Zealand cities and rural sites. Atmospheric Pollution Research, 10 (5), 1396–1403.
  • Karacı, A., 2018. Akıllı Şehir Hava Takip Sistemi ve Astım Hastaları için PM2.5 Konsantrasyonu Ölçüm Aracının Geliştirilmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 6 (3), 418-425.
  • Kara, M., Hopke, P. K., Dumanoglu, Y., Altiok, H., Elbir, T., Odabasi, M., Bayram, A., 2015. Characterization of PM using multiple site data in a heavily industrialized region of Turkey. Aerosol and Air Quality Research, 15(1), 11–27.
  • Karakavuz, E., Yıldırım Y., 2017. Zonguldak Kentsel Atmosferinde Partikül Madde Boyut Dağılımı. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 1-3 Kasım, Antalya, 180–189.
  • Karnae, S., John, K., 2019. Source apportionment of PM2.5 measured in South Texas near U.S.A. – Mexico border. Atmospheric Pollution Research, 10 (5), 1663–1676.
  • Kendall, M., Pala, K., Ucakli, S., Gucer, S., 2011. Airborne particulate matter (PM2.5 and PM10) and associated metals in urban Turkey. Air Quality, Atmosphere and Health, 4 (3), 235–42.
  • KGM-Karayolları Genel Müdürlüğü, 2020. 2019 Trafik ve Ulaşım Bilgileri: Otoyollar ve Devlet Yollarının Trafik Dilimlerine göre Yıllık Ortalama Günlük Trafik Değerleri ve Ulaşım Bilgileri. Trafik Güvenliği Dairesi Başkanlığı Ulaşım Etütleri Şubesi Müdürlüğü. https://www.kgm.gov.tr/SiteCollectionDocuments/KGMdocuments/Istatistikler/TrafikveUlasimBilgileri/19TrafikUlasimBilgileri.pdf.
  • KGM-Karayolları Genel Müdürlüğü, 2009. Devlet Yolları Trafik Akımı Özellikleri ve Trafik Parametreleri. Strateji Geliştirme Daire Başkanlığı Ulaşım ve Maliyet Etütleri Şubesi Müdürlüğü, https://www.kgm.gov.tr/SiteCollectionDocuments/KGMdocuments/Yayinlar/YayinPdf/Devlet%20Yollar%C4%B1%20Trafik%20Ak%C4%B1m%C4%B1%20%C3%96zellikleri%20ve%20Trafik%20Parametreleri.pdf.
  • Khodeir, M., Shamy, M., Alghamdi, M., Zhong, M., Sun, H., Costa, M., Chen, L. C., Maciejczyk, P., 2012. Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmospheric Pollution Research, 3 (3), 331–40.
  • Kim, S., Kim, T., Yi, S., Heo, J., 2018. Source apportionment of PM2.5 using positive matrix factorization (PMF) at a rural site in Korea. Journal of Environmental Management, 214, 325–34.
  • Koçak, M., Mihalopoulos, N., Kubilay, N., 2007. Contributions of natural sources to high PM10 and PM2.5 events in the eastern Mediterranean. Atmospheric Environment, 41, 3806–3818.
  • Koçak, E., 2018. Aksaray Kentinin PM10 ve SO2 Konsantrasyonlarının zamansal değişimi: Koşullu İki Değişkenli Olasılık Fonksiyonu ve K-Means Kümeleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6(3), 471-478.
  • Ledoux, F., Kfoury, A., Delmaire, G., Roussel, G., El Zein, A., Courcot, D., 2017. Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere, 181, 713–24.
  • MGM-Meteoroloji Genel Müdürlüğü, 2020. “Resmi İstatistikler”. Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü. https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=KOCAELI.
  • Miranda, R. M., Fatima Andrade, M., Fornaro, A., Astolfo, R., Andre, P. A., Saldiva, P., 2012. Urban air pollution: A representative survey of PM 2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere and Health, 5 (1), 63–77.
  • Mohammed, G., Karani, G., Mitchell, D., 2017. Trace Elemental Composition in PM10 and PM2.5 Collected in Cardiff, Wales. Energy Procedia, 111, 540–47.
  • Onat, B., Sahin, U. A., Akyuz, T., 2013. Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul, Turkey. Atmospheric Pollution Research, 4 (1), 101–5.
  • Owoade, K. O., Hopke, P. K., Olise, F. S., Adewole, O. O., Ogundele, L. T., Fawole, O. G., 2016. Source apportionment analyses for fine (PM2.5) and coarse (PM2.5-10) mode particulate matter (PM) measured in an urban area in southwestern Nigeria. Atmospheric Pollution Research, 7(5), 843–857.
  • Özdemir, H., Borucu, G., Demir, G., Yiǧit, S., Namik, A. K., 2010. Examining the particulate matter (PM2.5 ve PM10) pollution on the playgrounds in Istanbul. Ekoloji, 79 (77), 72–79.
  • Pekey, B., Bozkurt, Z. B., Pekey, H., Doğan, G., Zararsız, A., Efe, N., Tuncel, G., 2010. Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli City, Turkey. Indoor Air, 20 (2), 112–25.
  • Pekey, H., Pekey, B., Arslanbaş, D., Bozkurt, Z., Doğan, G., Tuncel, G., 2015. Türkiye’de endüstriyel ve Şehirleşmiş bir alanda uçucu organik bileşik ve partikül madde kaynaklarının tanımlaması. Ekoloji, 24 (94), 1–9.
  • Pérez, N., Pey, J., Reche, C., Cortés, J., Alastuey, A., Querol, X., 2016. Impact of harbour emissions on ambient PM10 and PM2.5 in Barcelona (Spain): Evidences of secondary aerosol formation within the urban area. Science of the Total Environment, 571, 237–250.
  • Perrone, M.R., Vecchi, R., Romano, S., Becagli, S., Traversi, R., Paladini, F., 2019. Weekly cycle assessment of PM mass concentrations and sources, and impacts on temperature and wind speed in Southern Italy. Atmospheric Research, 218, 129–44.
  • Pipal, A.S., Gursumeeran Satsangi, P., 2015. Study of carbonaceous species, morphology and sources of fine (PM2.5) and coarse (PM10) particles along with their climatic nature in India. Atmospheric Research, 154, 103–15.
  • Rengarajan, R., Sudheer, A. K., Sarin, M. M., 2011. Wintertime PM2.5 and PM10 carbonaceous and inorganic constituents from urban site in western India. Atmospheric Research, 102 (4), 420–31.
  • Saliba, N.A., El Jam, F., El Tayar, G., Obeid, W., Roumie, M., 2010. Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city. Atmospheric Research, 97 (1–2), 106–14.
  • Shahid, I., Kistler, M., Mukhtar, A., Ghauri, B.M., Cruz, C.R., Bauer, H., Puxbaum, H., 2016. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi-Pakistan. Atmospheric Environment, 128, 114–23.
  • Spindler, G., Brüggemann, G., Gnauk, T., Grüner, A., Müller, K., Herrmann, H., 2010. A four-year size-segregated characterization study of particles PM10, PM2.5 and PM 1 depending on air mass origin at Melpitz. Atmospheric Environment, 44, 164–73.
  • Szigeti, T., Mihucz, V.G., Óvári, M., Baysal, A., Atilgan, S., Akman, S., Záray, G., 2013. Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Microchemical Journal, 107, 86–94.
  • Şahin, Ü.A., Scherbakova, K., Onat, B., 2012. Size distribution and seasonal variation of airborne particulate matter in five areas in Istanbul, Turkey. Environmental Science and Pollution Research. 19 (4), 1198–1209.
  • Şengün, M.T., Kıranşan, K., 2012. The Effects of Desert Dusts on Natural and Human Environment in Turkey. Fırat Üniversitesi Sosyal Bilimler Dergisi, 22 (2), 1–15.
  • Tecer, L.H., Fıçıcı, M., Sofuoğlu, S., Özmetin, C., 2017. Kent (çorlu) ve sanayi (çerkezköy) bölgesi atmosferlerinde PM kütle konsantrasyonlarının değişiminin incelenmesi. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 1-3 Kasım, Antalya, 795–802.
  • Tepe, A.M., Doğan, G., 2019. Türkiye'nin Güney Sahilinde Yer Alan Dört Şehrin Hava Kalitelerinin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(3), 585-595.
  • Tiwari, S., Hopke, P.K., Pipal, A.S., Srivastava, A.K., Bisht, D.S., Tiwari, S., Singh, A.K., Soni, V.K., Attri, S.D., 2015. Intra-urban variability of particulate matter (PM2.5 and PM10) and its relationship with optical properties of aerosols over Delhi, India. Atmospheric Research, 166, 223–32.
  • TMMOB-Türk Mühendis ve Mimar Odaları Birliği, 2019. Hava Kirliliği Raporu 2019. Çevre Mühendisleri Odası. http://www.tmmob.org.tr/sites/default/files/2019.pdf.
  • Trusz, A., Ghazal, H., Piekarska, H., 2020. Seasonal variability of chemical composition and mutagenic effect of organic PM2.5 pollutants collected in the urban area of Wrocław (Poland). Science of the Total Environment, 733, 138911.
  • USEPA, 2009. Quality Assurance Guidance Document Method Compendium. 2009. https://www.epa.gov/sites/production/files/2020-09/documents/pepqapp.pdf.
  • Wang, Q., Gu, J., Wang, X., 2020. The impact of Sahara dust on air quality and public health in European countries. Atmospheric Environment, 241, 117771.
  • Wang, Q., Liu, M., Yu, Y., Li, Y., 2016. Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai city , China. Environmental Pollution, 218, 118–28.
  • WHO, 2005. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide : global update 2005 : summary of risk assessment”. 2005. https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf.
  • Wimolwattanapun, W., Hopke, P.K., Pongkiatkul, P., 2011. Atmospheric Pollution Research PM2.5–10 at residential sites in metropolitan Bangkok. Atmospheric Pollution Research, 2 (2), 172–81.
  • Xu, G., Jiao, L., Zhang, B., Zhao, S., Yuan, M., Gu, Y., Liu, J.,Tang, X., 2017. Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China. Aerosol and Air Quality Research, 17 (3), 741–51.
  • Yalçın, F., Tepe, A. M., Doğan, G., Cızmecı, N., 2021. Spatial Regression Models for Explaining AQI Values in Cities of Turkey. Kocaeli Journal of Science and Engineering, 4 (1), 1-15.
  • Yatkin, S., Bayram, A., 2008. Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Science of the Total Environment, 390 (1), 109–23.
  • Yazıcı, H., Akçay, M., Çay, Y., Sekmen, Y., Yılmaz, İ. T., Gölcü, M., 2010. Hava kirliliğinin doğalgaz kullanımı ile değişimi, Denizli il örneği. Selçuk-Teknik Dergisi, 9(3), 205-215.
  • Yin, G., Liu, C., Hao, L., Chen, Y., Wang, W., Huo, J., Zhao, Q., 2019. Associations between size-fractionated particle number concentrations and COPD mortality in Shanghai, China. Atmospheric Environment, 214, 116875.
  • Yurdakul, S., Ayyıldız, N., Çelik, V. E., İçöz, E., 2019. Süleyman Demirel Üniversitesi Seçili Dersliklerinin İç Çevre Kalitesi Açısından İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7 (4), 811-818.
  • Yurdakul, S., Civan, M., Tuncel, G., 2013. Volatile organic compounds in suburban Ankara atmosphere , Turkey : Sources and variability. Atmospheric Research, 120–121, 298–311.
  • Zengin Kazancı, S., Tanır Kayıkçı, E., 2015. Konumsal Enterpolasyon Yöntemleri Uygulamalarında Optimum Parametre Seçimi: Doğu Karadeniz Bölgesi Günlük Ortalama Sıcaklık Verileri Örneği. 15. Türkiye Harita Bilimsel ve Teknik Kurultayı, Ankara, 25 - 28 Mart , 1-10.
  • Zeydan, Ö., Wang, Y., 2019. Using MODIS derived aerosol optical depth to estimate ground-level PM2.5 concentrations over Turkey. Atmospheric Pollution Research, 10, 1565–76.
There are 70 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Süheyla Öztürk 0000-0002-8013-8020

Deniz Gerçek 0000-0003-4818-9802

İsmail Talih Güven 0000-0002-1048-3494

Eftade Gaga 0000-0003-3182-9340

Özlem Özden Üzmez 0000-0003-4310-788X

Mihriban Civan 0000-0002-2966-3188

Project Number 2018/103
Publication Date September 21, 2021
Submission Date March 1, 2021
Acceptance Date May 17, 2021
Published in Issue Year 2021

Cite

APA Öztürk, S., Gerçek, D., Güven, İ. T., Gaga, E., et al. (2021). KOCAELİ İZMİT İLÇESİ’NDE PARTİKÜL MADDE (PM2.5) KONSANTRASYON SEVİYELERİ, MEKÂNSAL VE MEVSİMSEL DEĞERLENDİRİLMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(3), 809-821. https://doi.org/10.21923/jesd.888896