Research Article
BibTex RIS Cite

MODELING THE RELATIONSHIPS BETWEEN PAVEMENT CONDITION INDEX AND RIDE COMFORT

Year 2022, Volume: 10 Issue: 3, 878 - 890, 30.09.2022
https://doi.org/10.21923/jesd.1035486

Abstract

The study, it is aimed to mathematically model the relationships between the Pavement Condition Index (PCI), which is used as a pavement performance indicator, and the amount of whole-body vibration exposure in a passenger car. Vibration measurements were analyzed according to the frequency-weighted data processing method, the technical details of which were explained in the ISO 2631 standard, and aw values were obtained in the vertical direction. Mathematical relationships between PCI values and actual vibration measurement data in the range of 20-50 km/h ride speed were modeled using linear regression analysis on the road sections determined in an urban road network with a bituminous hot-mixed pavement. The statistical compatibility of the models was examined. Through the mathematical models generated for each ride speed, the threshold values of PCI that affect ride comfort, and the ride comfort values corresponding to the PCI limit values in the traditional evaluation scale recommended by the PAVER system were determined. In the evaluated speed range, the PCI limit values were 0, 11, 29, 41 on the ‘a little uncomfortable - fairly uncomfortable’ threshold, 37, 62, 69, 77 on the ‘not uncomfortable - a little uncomfortable’ threshold, respectively. Finally, the threshold values produced by the linear regression method were compared with the threshold values obtained by logistic regression, fuzzy logic and artificial neural network techniques in previous studies in the literature. It was determined linear regression analysis generated lower PCI threshold values than other techniques.

References

  • Abudinen, D., Fuentes, L. G., Carvajal Muñoz, J. S., 2017. Travel Quality Assessment of Urban Roads Based on International Roughness Index. Transportation Research Record: Journal of the Transportation Research Board, 2612, 1-10.
  • ASTM. 2016. Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys, ASTM D 6433-16. West Conshohocken, PA, United States: ASTM International.
  • Cantisani, G., Loprencipe, G., 2010. Road Roughness and Whole Body Vibration: Evaluation Tools and Comfort Limits. Journal of Transportation Engineering, 136 (9), 818-826.
  • Carey Jr, W. N., Irick, P. E., 1960. The pavement serviceability-performance concept. Highway Research Board Bulletin, 250, 40-58.
  • Duarte, M. L. M., De Melo, G. C., 2018. Influence of pavement type and speed on whole-body vibration (WBV) levels measured on passenger vehicles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (3), 150.
  • Fichera, G., Scionti, M., Garescì, F., 2007. Experimental Correlation between the Road Roughness and the Comfort Perceived In Bus Cabins. SAE Technical Paper, 352, 1-13.
  • Fisher, R. A., 1922. The Goodness of Fit of Regression Formulae, and the Distribution of Regression Coefficients. Journal of the Royal Statistical Society, 85 (4), 597-612.
  • Fuentes, L., Camargo, R., Martínez-Arguelles, G., Komba, J. J., Naik, B., Walubita, L. F., 2021. Pavement serviceability evaluation using whole body vibration techniques: a case study for urban roads. International Journal of Pavement Engineering, 22 (10), 1238-1249.
  • Griffin, M. J., 2007. Discomfort from feeling vehicle vibration. Vehicle System Dynamics, 45 (7-8), 679-698. Griffin, M. J., 2012. Handbook of human vibration. London, UK: Academic press.
  • Guanyu, W., Michael, B., Gurmel, G., 2020. Study of the Factors Affecting Road Roughness Measurement Using Smartphones. Journal of Infrastructure Systems, 26 (3), 04020020.
  • Haas, R., Hudson, W. R., Zaniewski, J. P., 1994. Modern Pavement Management. Malabar, Florida, USA: Krieger Pub. Co.
  • ISO. 1997. Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 1: General Requirement, ISO 2631-1. Geneva, Switzerland: ISO.
  • ISO. 2005. Human response to vibration - Measuring instrumentation, ISO BS EN 8041. Geneva, Switzerland: ISO.
  • Kim, M. S., Kim, K. W., Yoo, W. S., 2011. Method to objectively evaluate subjective ratings of ride comfort. International Journal of Automotive Technology, 12 (6), 831-837.
  • Kırbaş, U., 2018. Determination of International Roughness Index Limit Values for Comfortable Riding (in Turkish). Journal of Engineering Sciences and Design, 6 (2), 301-309.
  • Kırbaş, U., Karaşahin, M., 2016. Performance models for hot mix asphalt pavements in urban roads. Construction and Building Materials, 116, 281-288.
  • Kırbaş, U., Karaşahin, M., 2018a. Investigation of ride comfort limits on urban asphalt concrete pavements. International Journal of Pavement Engineering, 19 (10), 949-955.
  • Kırbaş, U., Karaşahin, M., 2018b. Pavement performance levels causing human health risks. Journal of the Croatian Association of Civil Engineers, 70 (10), 851-861.
  • Kırbaş, U., Karaşahin, M., 2019. Determination of Pavement Performance Thresholds for Comfortable Riding on Urban Roads. Journal of Testing and Evaluation, 47 (1), 57-77.
  • La Torre, F., Ballerini, L., Di Volo, N., 2002. Correlation Between Longitudinal Roughness and User Perception in Urban Areas. Transportation Research Record, 1806 (1), 131-139.
  • Múčka, P., 2017. Road Roughness Limit Values Based on Measured Vehicle Vibration. Journal of Infrastructure Systems, 23 (2), 04016029.
  • Múčka, P., 2020. Vibration Dose Value in Passenger Car and Road Roughness. Journal of Transportation Engineering, Part B: Pavements, 146 (4), 04020064.
  • Múčka, P., 2021. International Roughness Index Thresholds Based on Whole-Body Vibration in Passenger Cars. Transportation Research Record, 2675 (1), 305-320.
  • Nguyen, T., Lechner, B., Wong, Y. D., Tan, J. Y., 2019. Bus Ride Index – a refined approach to evaluating road surface irregularities. Road Materials and Pavement Design, 22 (2), 423-443.
  • Sayers, M. W., Karamihas, S. M., 1996. Interpretation of road roughness profile data: 166: Federal Highway Administration.
  • Shahin, M. Y., 2005. Pavement management for airports, roads, and parking lots. New York: Springer.
  • Wang, F., Easa, S., 2016. Analytical Evaluation of Ride Comfort on Asphalt Concrete Pavements. Journal of Testing and Evaluation, 44 (4), 1671-1682.
  • Yu, J., Chou, E. Y. J., Yau, J.-T., 2006. Development of Speed-Related Ride Quality Thresholds Using International Roughness Index. Transportation Research Record: Journal of the Transportation Research Board, 1974, 47-53.
  • Zhang, J., Wang, L., Jing, P., Wu, Y., Li, H., 2020. IRI Threshold Values Based on Riding Comfort. Journal of Transportation Engineering, Part B: Pavements, 146 (1), 04020001.

ÜSTYAPI DURUM İNDEKSİ VE SÜRÜŞ KONFORU ARASINDAKİ İLİŞKİLERİN MODELLENMESİ

Year 2022, Volume: 10 Issue: 3, 878 - 890, 30.09.2022
https://doi.org/10.21923/jesd.1035486

Abstract

Çalışmada üstyapı performans göstergesi olarak kullanılan Üstyapı Durum İndeksi (PCI) ve yolcu otomobilinde maruz kalınan tüm vücut titreşimi miktarı arasındaki ilişkilerin matematik olarak modellenmesi amaçlanmıştır. Titreşim ölçümleri, teknik detayları ISO 2631 standardında açıklanan frekans ağırlıklı veri işleme yöntemine göre analiz edilerek düşey doğrultuda aw değerleri elde edilmiştir. Bitümlü sıcak karışım üstyapıya sahip bir kentsel yol ağında belirlenen yol kesimlerinde, PCI değerleri ve 20-50 km/sa sürüş hızı aralığında yapılan gerçek titreşim ölçüm verileri arasındaki matematiksel ilişkiler doğrusal regresyon analizi kullanılarak modellenmiştir. Modellerin istatistik olarak uyumları incelenmiştir. Her bir sürüş hızı için oluşturulan matematik model aracılığıyla PCI’ın sürüş konforunu etkileyen eşik değerleri ve PAVER sistemince önerilen geleneksel değerlendirme ölçeğindeki PCI sınır değerlerine karşılık gelen sürüş konforu değerleri belirlenmiştir. Değerlendirilen hız aralığında PCI sınır değerleri sırasıyla ‘az konforsuz - biraz konforsuz’ eşiğinde 0, 11, 29, 41, ‘konforlu - az konforsuz’ eşiğinde 37, 62, 69, 77 olarak bulunmuştur. Son olarak doğrusal regresyon analizi yöntemi ile üretilen eşik değerleri literatürde bulunan önceki çalışmalarda lojistik regresyon, bulanık mantık ve yapay sinir ağları teknikleri ile elde edilen eşik değerleri ile kıyaslanmıştır. Doğrusal regresyon analizinin diğer tekniklere nazaran daha düşük PCI eşik değerleri verdiği tespit edilmiştir.

References

  • Abudinen, D., Fuentes, L. G., Carvajal Muñoz, J. S., 2017. Travel Quality Assessment of Urban Roads Based on International Roughness Index. Transportation Research Record: Journal of the Transportation Research Board, 2612, 1-10.
  • ASTM. 2016. Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys, ASTM D 6433-16. West Conshohocken, PA, United States: ASTM International.
  • Cantisani, G., Loprencipe, G., 2010. Road Roughness and Whole Body Vibration: Evaluation Tools and Comfort Limits. Journal of Transportation Engineering, 136 (9), 818-826.
  • Carey Jr, W. N., Irick, P. E., 1960. The pavement serviceability-performance concept. Highway Research Board Bulletin, 250, 40-58.
  • Duarte, M. L. M., De Melo, G. C., 2018. Influence of pavement type and speed on whole-body vibration (WBV) levels measured on passenger vehicles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (3), 150.
  • Fichera, G., Scionti, M., Garescì, F., 2007. Experimental Correlation between the Road Roughness and the Comfort Perceived In Bus Cabins. SAE Technical Paper, 352, 1-13.
  • Fisher, R. A., 1922. The Goodness of Fit of Regression Formulae, and the Distribution of Regression Coefficients. Journal of the Royal Statistical Society, 85 (4), 597-612.
  • Fuentes, L., Camargo, R., Martínez-Arguelles, G., Komba, J. J., Naik, B., Walubita, L. F., 2021. Pavement serviceability evaluation using whole body vibration techniques: a case study for urban roads. International Journal of Pavement Engineering, 22 (10), 1238-1249.
  • Griffin, M. J., 2007. Discomfort from feeling vehicle vibration. Vehicle System Dynamics, 45 (7-8), 679-698. Griffin, M. J., 2012. Handbook of human vibration. London, UK: Academic press.
  • Guanyu, W., Michael, B., Gurmel, G., 2020. Study of the Factors Affecting Road Roughness Measurement Using Smartphones. Journal of Infrastructure Systems, 26 (3), 04020020.
  • Haas, R., Hudson, W. R., Zaniewski, J. P., 1994. Modern Pavement Management. Malabar, Florida, USA: Krieger Pub. Co.
  • ISO. 1997. Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 1: General Requirement, ISO 2631-1. Geneva, Switzerland: ISO.
  • ISO. 2005. Human response to vibration - Measuring instrumentation, ISO BS EN 8041. Geneva, Switzerland: ISO.
  • Kim, M. S., Kim, K. W., Yoo, W. S., 2011. Method to objectively evaluate subjective ratings of ride comfort. International Journal of Automotive Technology, 12 (6), 831-837.
  • Kırbaş, U., 2018. Determination of International Roughness Index Limit Values for Comfortable Riding (in Turkish). Journal of Engineering Sciences and Design, 6 (2), 301-309.
  • Kırbaş, U., Karaşahin, M., 2016. Performance models for hot mix asphalt pavements in urban roads. Construction and Building Materials, 116, 281-288.
  • Kırbaş, U., Karaşahin, M., 2018a. Investigation of ride comfort limits on urban asphalt concrete pavements. International Journal of Pavement Engineering, 19 (10), 949-955.
  • Kırbaş, U., Karaşahin, M., 2018b. Pavement performance levels causing human health risks. Journal of the Croatian Association of Civil Engineers, 70 (10), 851-861.
  • Kırbaş, U., Karaşahin, M., 2019. Determination of Pavement Performance Thresholds for Comfortable Riding on Urban Roads. Journal of Testing and Evaluation, 47 (1), 57-77.
  • La Torre, F., Ballerini, L., Di Volo, N., 2002. Correlation Between Longitudinal Roughness and User Perception in Urban Areas. Transportation Research Record, 1806 (1), 131-139.
  • Múčka, P., 2017. Road Roughness Limit Values Based on Measured Vehicle Vibration. Journal of Infrastructure Systems, 23 (2), 04016029.
  • Múčka, P., 2020. Vibration Dose Value in Passenger Car and Road Roughness. Journal of Transportation Engineering, Part B: Pavements, 146 (4), 04020064.
  • Múčka, P., 2021. International Roughness Index Thresholds Based on Whole-Body Vibration in Passenger Cars. Transportation Research Record, 2675 (1), 305-320.
  • Nguyen, T., Lechner, B., Wong, Y. D., Tan, J. Y., 2019. Bus Ride Index – a refined approach to evaluating road surface irregularities. Road Materials and Pavement Design, 22 (2), 423-443.
  • Sayers, M. W., Karamihas, S. M., 1996. Interpretation of road roughness profile data: 166: Federal Highway Administration.
  • Shahin, M. Y., 2005. Pavement management for airports, roads, and parking lots. New York: Springer.
  • Wang, F., Easa, S., 2016. Analytical Evaluation of Ride Comfort on Asphalt Concrete Pavements. Journal of Testing and Evaluation, 44 (4), 1671-1682.
  • Yu, J., Chou, E. Y. J., Yau, J.-T., 2006. Development of Speed-Related Ride Quality Thresholds Using International Roughness Index. Transportation Research Record: Journal of the Transportation Research Board, 1974, 47-53.
  • Zhang, J., Wang, L., Jing, P., Wu, Y., Li, H., 2020. IRI Threshold Values Based on Riding Comfort. Journal of Transportation Engineering, Part B: Pavements, 146 (1), 04020001.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Ufuk Kırbaş 0000-0002-2389-425X

Mustafa Karasahin 0000-0002-3811-2230

Publication Date September 30, 2022
Submission Date December 11, 2021
Acceptance Date May 30, 2022
Published in Issue Year 2022 Volume: 10 Issue: 3

Cite

APA Kırbaş, U., & Karasahin, M. (2022). ÜSTYAPI DURUM İNDEKSİ VE SÜRÜŞ KONFORU ARASINDAKİ İLİŞKİLERİN MODELLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(3), 878-890. https://doi.org/10.21923/jesd.1035486