Research Article
BibTex RIS Cite

ŞEKER PANCARI KÜSPESİ PARTİKÜLLERİ DOLGULU POLİPROPİLEN MATRİKS BİYOKOMPOZİTİN ÜRETİMİ VE KARAKTERİZASYONU

Year 2025, Volume: 13 Issue: 3, 791 - 805, 30.09.2025

Abstract

Bu çalışmada, şeker pancarı küspesi (SP) atıklarını azaltmak ve tarımsal atık malzemelerin çeşitli uygulamalardaki potansiyelini göstermek amacıyla polipropilen (PP) matrisli biyokompozitler geliştirilmiştir. Şeker üretim fabrikasından elde edilen şeker pancarı küspesi kurutma işlemine tabi tutulmuş ve ardından mekanik olarak öğütülmüştür. Bu işlemden sonra, elde edilen toz şeker pancarı posası parçacıkları elemeişlemine tabi tutuldu ve 100–250 μm boyut aralığında parçacıklar elde edildi. Bu parçacıklar daha sonra %5 ila %20 arasında değişen dolum seviyelerinde saf PP matrisine katıldı. Daha sonra, bu biyokompozitlerin mekanik (çekme, eğilme, DMA), termal (TGA, DSC) ve kimyasal (FTIR) özellikleri incelenmiştir. DMA sonuçları, dolgu içeriğinin artmasıyla depolama modülünde belirgin bir iyileşme olduğunu göstermiş ve şeker pancarı küspesi parçacıklarının sertleştirici etkisini desteklemiştir. DSC analizi, erime sıcaklığında minimum değişiklik, ancak daha yüksek dolgu oranlarında kristallik derecesinde hafif bir azalma olduğunu gösterdi. FTIR spektrumları, PP matrisinde lignoselülozik şeker pancarı posasından karakteristik fonksiyonel grupların varlığını doğruladı ve bu da başarılı bir birleştirme olduğunu gösterdi. PP matris biyokompozitlerdeki elastik modülün, şeker pancarı posası parçacıklarının miktarı arttıkça arttığı belirlendi. PP ve biyokompozitlerin termogravimetrik analiz (TGA) verileri karşılaştırıldığında, SP100 ve SP250 oranının artmasıyla maksimum bozunma sıcaklığında (Tmax) bir artış gözlemlenirken, bozunmanın başladığı sıcaklıkta (Ton) bir azalma gözlemlenmiştir. Bu biyokompozitler, otomotiv, ambalaj ve inşaat endüstrilerinde sürdürülebilir malzemeler olarak uygulama için umut verici bir potansiyel sergilemektedir.

References

  • Abdelwahab, M., Misra, M., Mohanty, A.K., 2015. Injection molded biocomposites from polypropylene and sustainable biocarbon: Effect of biocarbon content on surface properties. Composites Part B: Engineering, 83, 210-217. https://doi.org/10.1016/j.compositesb.2015.08.054
  • Altunbay, S.G., Kangal, A., Gürel, S., 2016. Şeker pancarından biyoetanol üretimi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25, 334–339.
  • BAŞTÜRK, B., 2021. An Investigation on the Flexural and Thermo-mechanical Properties of CaCO3/Epoxy Composites. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18, 161–167. https://doi.org/10.18466/cbayarfbe.1015351
  • Chen, H., Zhang, X., Xu, J., 2024. Enhancing PP composites with lignin nanoparticles: thermal dynamics and life-cycle analysis. Frontiers in Materials, 11,1105643. https://doi.org/10.3389/fmats.2024.1105643
  • Colom, X., Cañavate, J., Pagès, P., Saurina, J., Carrasco, F., 2000. Changes in crystallinity of the HDPE matrix in composites with cellulosic fiber using DSC and FTIR. Journal of Reinforced Plastics and Composites, 19, 818–830. https://doi.org/10.1106/8RMN-D1HE-75V1-7LN0
  • Dungani, R., Abdul Khalil, H.P.S., Aprilia, N.A.S., Sumardi, I., Aditiawati, P., Darwis, A., Karliati, T., Sulaeman, A., Rosamah, E., Riza, M., 2017. Bionanomaterial from agricultural waste and its application, in: Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications. Elsevier, pp. 45–88. https://doi.org/10.1016/B978-0-08-100957-4.00003-6
  • E. Onishi, S., 2015. Effect of Particle Loading, Temperature and Surface Treatment on Moisture Absorption of CFB Fly Ash Reinforced Thermoset Composite. International Journal of Chemical Engineering and Applications, 6, 12–17. https://doi.org/10.7763/ijcea.2015.v6.442
  • Essabir, H., Raji, M., Laachachi, A., Bouhfid, R., 2018. Bio-based polypropylene composites reinforced with olive solid waste fibers: Mechanical and thermal properties. Composites Part B: Engineering, 150, 1–10.
  • Essabir, H., Raji, M., Laaziz, S.A., Rodrique, D., Bouhfid, R., Qaiss, A. el kacem, 2018. Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Composites Part B: Engineering, 149, 1–11. https://doi.org/10.1016/j.compositesb.2018.05.020
  • Estrada, H., Lee, L.S., 2013. Mechanics of composite materials, The International Handbook of FRP Composites in Civil Engineering. CRC press. https://doi.org/10.1115/1.3423688
  • Garcia-Rodriguez, J., Lopez, M., Morales, A., 2020. Lignin-based polypropylene composites with improved mechanical properties and reduced carbon emissions. Sustainability, 12(14), 5850. https://doi.org/10.3390/su12145850
  • Goutianos, S., Peijs, T., Nystrom, B., Skrifvars, M., 2006. Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials, 13, 199–215. https://doi.org/10.1007/s10443-006-9010-2
  • Gurunathan, T., Mohanty, S., Nayak, S.K., 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1–25. https://doi.org/10.1016/j.compositesa.2015.06.007
  • Hansen, B., Borsoi, C., Dahlem Júnior, M.A., Catto, A.L., 2019. Thermal and thermo-mechanical properties of polypropylene composites using yerba mate residues as reinforcing filler. Industrial Crops and Products, 140, 111696. https://doi.org/10.1016/j.indcrop.2019.111696
  • Kaya, N., Atagur, M., Akyuz, O., Seki, Y., Sarikanat, M., Sutcu, M., Seydibeyoglu, M.O., Sever, K., 2018. Fabrication and characterization of olive pomace filled PP composites. Composites Part B: Engineering, 150, 277–283. https://doi.org/10.1016/j.compositesb.2017.08.017
  • Kilinc, A.C., Atagur, M., Ozdemir, O., Sen, I., Kucukdogan, N., Sever, K., Seydibeyoglu, O., Sarikanat, M., Seki, Y., 2016. Manufacturing and characterization of vine stem reinforced high density polyethylene composites. Composites Part B: Engineering, 91, 267–274. https://doi.org/10.1016/j.compositesb.2016.01.033
  • Klyosov, A.A., 2007. Wood-plastic composites. John Wiley & Sons.
  • Kuan, H.T.N., Tan, M.Y., Shen, Y., Yahya, M.Y., 2021. Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review. Journal of Composites Science, 5(3), 87. https://doi.org/10.3390/jcs5030087
  • Liu, M., Wang, Y., 2023. Bamboo fiber-reinforced polypropylene composites: Enhancing tensile strength and environmental performance. Polymers, 15(4), 789. https://doi.org/10.3390/polym15040789
  • Martínez, C.M., Cantero, D.A., Cocero, M.J., 2018. Production of saccharides from sugar beet pulp by ultrafast hydrolysis in supercritical water. Journal of Cleaner Production, 204, 888–895. https://doi.org/10.1016/j.jclepro.2018.09.066
  • Ngaowthong, C., Borůvka, M., Běhálek, L., Lenfel, P., Švec, M., Dangtungee, R., Siengchin, S., Rangappa, S.M., Parameswaranpillai, J., 2019. Recycling of sisal fiber reinforced polypropylene and polylactic acid composites: Thermo-mechanical properties, morphology, and water absorption behavior. Waste Management, 97, 71–81. https://doi.org/10.1016/j.wasman.2019.07.038
  • Oliver-Ortega, H., Julian, F., Espinach, F.X., Tarrés, Q., Ardanuy, M., Mutjé, P., 2019. Research on the use of lignocellulosic fibers reinforced bio-polyamide 11 with composites for automotive parts: Car door handle case study. Journal of Cleaner Production, 226, 64–73. https://doi.org/10.1016/j.jclepro.2019.04.047
  • Öztürk, N.K., Sever, K., Sütçü, M., Seki, Y., 2015. Tarımsal Atık İle Katkı-lanmış Yüksek Yoğunluklu Polietilen Kompozitlerin Fiziksel, Mekanik Ve Termal Özelliklerinin Belirlenmesi.
  • Patel, R.V., Yadav, A., Winczek, J., 2023. Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications. Applied Sciences, 13, 5126. https://doi.org/10.3390/app13085126
  • Patel, S.K., Kumar, A., Singh, P., 2021. Influence of sugarcane bagasse fiber on the performance of polypropylene-based composites. Journal of Renewable Materials, 9(7), 1313–1325.
  • Patel, S.K., Kumar, A., Singh, P., 2021. Reinforcement of polypropylene composites with sugarcane bagasse: Mechanical and thermal profiling. Journal of Polymer Research, 28(5), 310. https://doi.org/10.1007/s10965-021-02712-3
  • Pattanaik, L., Pattnaik, F., Saxena, D.K., Naik, S.N., 2019. Biofuels from agricultural wastes, in: Second and Third Generation of Feedstocks: The Evolution of Biofuels. Elsevier, pp. 103–142. https://doi.org/10.1016/B978-0-12-815162-4.00005-7
  • Rajak, D.K., Pagar, D.D., Menezes, P.L., Linul, E., 2019. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 11(10), 1667. https://doi.org/10.3390/polym11101667
  • Ramos, V., Costa, L., Silva, E., 2022. Corn stover-filled polypropylene composites: Structure property relationships and biodegradation behavior. Materials Today Communications, 30, 103199. https://doi.org/10.1016/j.mtcomm.2021.103199
  • Ruangudomsakul, W., Ruksakulpiwat, C., Ruksakulpiwat, Y., 2015. Preparation and characterization of cellulose nanofibers from cassava pulp. Macromolecular Symposia, 354, 170–176. https://doi.org/10.1002/masy.201400096
  • Salazar-Cruz, B.A., Chávez-Cinco, M.Y., Morales-Cepeda, A.B., Ramos-Galván, C.E., Rivera-Armenta, J.L., 2022. Evaluation of Thermal Properties of Composites Prepared from Pistachio Shell Particles Treated Chemically and Polypropylene. Molecules, 27, 426. https://doi.org/10.3390/molecules27020426
  • Selvakumar, V., Manoharan, N., 2014. Thermal properties of polypropylene/montmorillonite nanocomposites. Indian Journal of Science and Technology, 7, 136–139.
  • Sever, K., Atagür, M., Tunçalp, M., Altay, L., Seki, Y., Sarıkanat, M., 2019. The effect of pumice powder on mechanical and thermal properties of polypropylene. Journal of Thermoplastic Composite Materials, 32, 1092–1106. https://doi.org/10.1177/0892705718785692
  • Sever, K., Aycan, Y., 2019. The effects of agro-waste reinforcing fillers as single and hybrid on mechanical and thermal properties of polypropylene. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 21, 395–408.
  • Sever, K., Tavman, I.H., Seki, Y., Turgut, A., Omastova, M., Ozdemir, I., 2013. Electrical and mechanical properties of expanded graphite/high density polyethylene nanocomposites. Composites Part B: Engineering, 53, 226–233. https://doi.org/10.1016/j.compositesb.2013.04.069
  • Sever, K., Yılmaz, M., 2020. Influence of wollastonite hybridization on the properties of artichoke-filled polypropylene composites. Emerging Materials Research, 9, 302–307. https://doi.org/10.1680/jemmr.18.00121
  • Shumigin, D., Tarasova, E., Krumme, A., Meier, P., 2011. Rheological and Mechanical Properties of Poly (lactic) Acid / Cellulose and LDPE / Cellulose Composites.
  • Sidi-Yacoub, B., Oudghiri, F., Belkadi, M., Rodríguez-Barroso, R., 2019. Characterization of lignocellulosic components in exhausted sugar beet pulp waste by TG/FTIR analysis. Journal of Thermal Analysis and Calorimetry, 138, 1801–1809. https://doi.org/10.1007/s10973-019-08179-8
  • Singh, A.K., Bedi, R., Khajuria, A., 2024. A review of composite materials based on rice straw and future trends for sustainable composites. Journal of Cleaner Production, 457, 142417. https://doi.org/10.1016/j.jclepro.2024.142417
  • Şen, İ., Tuna, S., Akkoyun Kurtlu, M., 2024. Evaluation of the use and performance of natural filler based polypropylene/leonardite composites. Journal of Cleaner Production, 480, 144105. https://doi.org/10.1016/j.jclepro.2024.144105
  • Tang, X., Yan, X., 2020. A review on the damping properties of fiber reinforced polymer composites. Journal of Industrial Textiles, 49(6), 693–721. https://doi.org/10.1177/1528083718795912
  • Tosun, F., 2017. ŞEKER PANCARI, Tepge Yayın: Ankara.
  • Tuna, S., Akkoyun Kurtlu, M., 2024. Effect of coupling agent on polylactic acid/polypropylene and polylactic acid/polyamide 6 foam composites. Journal of Applied Polymer Science, 141, e54849. https://doi.org/10.1002/app.54849
  • Vigneshwaran, S., Sundarakannan, R., John, K.M., Joel Johnson, R.D., Prasath, K.A., Ajith, S., Arumugaprabu, V., Uthayakumar, M., 2020. Recent advancement in the natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 277, 124109. https://doi.org/10.1016/j.jclepro.2020.124109
  • Yao, Z., Xia, M., Ge, L., Chen, T., Li, H., Ye, Y., Zheng, H., 2014. Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers and Polymers, 15, 1278–1287. https://doi.org/10.1007/s12221-014-1278-5
  • Yussuf, A.A., El-Fattah, A.I.A., Daramola, M.O., 2022. Development of polypropylene composites reinforced with wheat straw: Mechanical, thermal, and environmental performance. Heliyon, 8(3), e09128. https://doi.org/10.1016/j.heliyon.2022.e09128
  • Zhang, H., Wang, R., Liu, Z., 2023. Rice husk-filled polypropylene composites: Evaluation of processing, structure, and properties. Materials Today Sustainability, 21, 100332. https://doi.org/10.1016/j.mtsust.2023.100332

MANUFACTURING AND CHARACTERIZATION OF SUGAR BEET PULP PARTICLES FILLED POLYPROPYLENE MATRIX BIOCOMPOSITE

Year 2025, Volume: 13 Issue: 3, 791 - 805, 30.09.2025

Abstract

In this study, Polypropylene (PP) matrix biocomposites were developed with the aim of reducing sugar beet pulp (SP) waste and demonstrating the potential of agricultural waste materials in various applications. Sugar beet pulp extracted from a sugar production factory was subjected to a drying process and then mechanically ground. Following this process, the resultant powdered sugar beet pulp particles were subjected to a sieving process, yielding particles within the size range of 100–250 μm. These particles were then incorporated into the pure PP matrix at filling levels ranging from 5% to 20%. Subsequently, the mechanical (tensile, flexural, DMA), thermal (TGA, DSC), and chemical (FTIR) properties of these biocomposites were investigated. DMA results indicated a notable improvement in storage modulus with increased filler content, supporting the stiffening effect of sugar beet pulp particles. DSC analysis showed minimal change in melting temperature, but a slight decrease in crystallinity degree with higher filler ratios. FTIR spectra confirmed the presence of characteristic functional groups from lignocellulosic sugar beet pulp within the PP matrix, indicating successful incorporation. It was determined that the elastic modulus in the PP matrix biocomposites increased as the amount of sugar beet pulp particles increased. When the thermogravimetric analysis (TGA) data of PP and biocomposites were compared, an increase in the maximum degradation temperature (Tmax) was observed as the SP100 and SP250 ratio increased, while a decrease in the temperature at which degradation began (Ton) was observed. These biocomposites demonstrate promising potential for application in the automotive, packaging, and construction industries as sustainable materials.

References

  • Abdelwahab, M., Misra, M., Mohanty, A.K., 2015. Injection molded biocomposites from polypropylene and sustainable biocarbon: Effect of biocarbon content on surface properties. Composites Part B: Engineering, 83, 210-217. https://doi.org/10.1016/j.compositesb.2015.08.054
  • Altunbay, S.G., Kangal, A., Gürel, S., 2016. Şeker pancarından biyoetanol üretimi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25, 334–339.
  • BAŞTÜRK, B., 2021. An Investigation on the Flexural and Thermo-mechanical Properties of CaCO3/Epoxy Composites. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18, 161–167. https://doi.org/10.18466/cbayarfbe.1015351
  • Chen, H., Zhang, X., Xu, J., 2024. Enhancing PP composites with lignin nanoparticles: thermal dynamics and life-cycle analysis. Frontiers in Materials, 11,1105643. https://doi.org/10.3389/fmats.2024.1105643
  • Colom, X., Cañavate, J., Pagès, P., Saurina, J., Carrasco, F., 2000. Changes in crystallinity of the HDPE matrix in composites with cellulosic fiber using DSC and FTIR. Journal of Reinforced Plastics and Composites, 19, 818–830. https://doi.org/10.1106/8RMN-D1HE-75V1-7LN0
  • Dungani, R., Abdul Khalil, H.P.S., Aprilia, N.A.S., Sumardi, I., Aditiawati, P., Darwis, A., Karliati, T., Sulaeman, A., Rosamah, E., Riza, M., 2017. Bionanomaterial from agricultural waste and its application, in: Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications. Elsevier, pp. 45–88. https://doi.org/10.1016/B978-0-08-100957-4.00003-6
  • E. Onishi, S., 2015. Effect of Particle Loading, Temperature and Surface Treatment on Moisture Absorption of CFB Fly Ash Reinforced Thermoset Composite. International Journal of Chemical Engineering and Applications, 6, 12–17. https://doi.org/10.7763/ijcea.2015.v6.442
  • Essabir, H., Raji, M., Laachachi, A., Bouhfid, R., 2018. Bio-based polypropylene composites reinforced with olive solid waste fibers: Mechanical and thermal properties. Composites Part B: Engineering, 150, 1–10.
  • Essabir, H., Raji, M., Laaziz, S.A., Rodrique, D., Bouhfid, R., Qaiss, A. el kacem, 2018. Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Composites Part B: Engineering, 149, 1–11. https://doi.org/10.1016/j.compositesb.2018.05.020
  • Estrada, H., Lee, L.S., 2013. Mechanics of composite materials, The International Handbook of FRP Composites in Civil Engineering. CRC press. https://doi.org/10.1115/1.3423688
  • Garcia-Rodriguez, J., Lopez, M., Morales, A., 2020. Lignin-based polypropylene composites with improved mechanical properties and reduced carbon emissions. Sustainability, 12(14), 5850. https://doi.org/10.3390/su12145850
  • Goutianos, S., Peijs, T., Nystrom, B., Skrifvars, M., 2006. Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials, 13, 199–215. https://doi.org/10.1007/s10443-006-9010-2
  • Gurunathan, T., Mohanty, S., Nayak, S.K., 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1–25. https://doi.org/10.1016/j.compositesa.2015.06.007
  • Hansen, B., Borsoi, C., Dahlem Júnior, M.A., Catto, A.L., 2019. Thermal and thermo-mechanical properties of polypropylene composites using yerba mate residues as reinforcing filler. Industrial Crops and Products, 140, 111696. https://doi.org/10.1016/j.indcrop.2019.111696
  • Kaya, N., Atagur, M., Akyuz, O., Seki, Y., Sarikanat, M., Sutcu, M., Seydibeyoglu, M.O., Sever, K., 2018. Fabrication and characterization of olive pomace filled PP composites. Composites Part B: Engineering, 150, 277–283. https://doi.org/10.1016/j.compositesb.2017.08.017
  • Kilinc, A.C., Atagur, M., Ozdemir, O., Sen, I., Kucukdogan, N., Sever, K., Seydibeyoglu, O., Sarikanat, M., Seki, Y., 2016. Manufacturing and characterization of vine stem reinforced high density polyethylene composites. Composites Part B: Engineering, 91, 267–274. https://doi.org/10.1016/j.compositesb.2016.01.033
  • Klyosov, A.A., 2007. Wood-plastic composites. John Wiley & Sons.
  • Kuan, H.T.N., Tan, M.Y., Shen, Y., Yahya, M.Y., 2021. Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review. Journal of Composites Science, 5(3), 87. https://doi.org/10.3390/jcs5030087
  • Liu, M., Wang, Y., 2023. Bamboo fiber-reinforced polypropylene composites: Enhancing tensile strength and environmental performance. Polymers, 15(4), 789. https://doi.org/10.3390/polym15040789
  • Martínez, C.M., Cantero, D.A., Cocero, M.J., 2018. Production of saccharides from sugar beet pulp by ultrafast hydrolysis in supercritical water. Journal of Cleaner Production, 204, 888–895. https://doi.org/10.1016/j.jclepro.2018.09.066
  • Ngaowthong, C., Borůvka, M., Běhálek, L., Lenfel, P., Švec, M., Dangtungee, R., Siengchin, S., Rangappa, S.M., Parameswaranpillai, J., 2019. Recycling of sisal fiber reinforced polypropylene and polylactic acid composites: Thermo-mechanical properties, morphology, and water absorption behavior. Waste Management, 97, 71–81. https://doi.org/10.1016/j.wasman.2019.07.038
  • Oliver-Ortega, H., Julian, F., Espinach, F.X., Tarrés, Q., Ardanuy, M., Mutjé, P., 2019. Research on the use of lignocellulosic fibers reinforced bio-polyamide 11 with composites for automotive parts: Car door handle case study. Journal of Cleaner Production, 226, 64–73. https://doi.org/10.1016/j.jclepro.2019.04.047
  • Öztürk, N.K., Sever, K., Sütçü, M., Seki, Y., 2015. Tarımsal Atık İle Katkı-lanmış Yüksek Yoğunluklu Polietilen Kompozitlerin Fiziksel, Mekanik Ve Termal Özelliklerinin Belirlenmesi.
  • Patel, R.V., Yadav, A., Winczek, J., 2023. Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications. Applied Sciences, 13, 5126. https://doi.org/10.3390/app13085126
  • Patel, S.K., Kumar, A., Singh, P., 2021. Influence of sugarcane bagasse fiber on the performance of polypropylene-based composites. Journal of Renewable Materials, 9(7), 1313–1325.
  • Patel, S.K., Kumar, A., Singh, P., 2021. Reinforcement of polypropylene composites with sugarcane bagasse: Mechanical and thermal profiling. Journal of Polymer Research, 28(5), 310. https://doi.org/10.1007/s10965-021-02712-3
  • Pattanaik, L., Pattnaik, F., Saxena, D.K., Naik, S.N., 2019. Biofuels from agricultural wastes, in: Second and Third Generation of Feedstocks: The Evolution of Biofuels. Elsevier, pp. 103–142. https://doi.org/10.1016/B978-0-12-815162-4.00005-7
  • Rajak, D.K., Pagar, D.D., Menezes, P.L., Linul, E., 2019. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 11(10), 1667. https://doi.org/10.3390/polym11101667
  • Ramos, V., Costa, L., Silva, E., 2022. Corn stover-filled polypropylene composites: Structure property relationships and biodegradation behavior. Materials Today Communications, 30, 103199. https://doi.org/10.1016/j.mtcomm.2021.103199
  • Ruangudomsakul, W., Ruksakulpiwat, C., Ruksakulpiwat, Y., 2015. Preparation and characterization of cellulose nanofibers from cassava pulp. Macromolecular Symposia, 354, 170–176. https://doi.org/10.1002/masy.201400096
  • Salazar-Cruz, B.A., Chávez-Cinco, M.Y., Morales-Cepeda, A.B., Ramos-Galván, C.E., Rivera-Armenta, J.L., 2022. Evaluation of Thermal Properties of Composites Prepared from Pistachio Shell Particles Treated Chemically and Polypropylene. Molecules, 27, 426. https://doi.org/10.3390/molecules27020426
  • Selvakumar, V., Manoharan, N., 2014. Thermal properties of polypropylene/montmorillonite nanocomposites. Indian Journal of Science and Technology, 7, 136–139.
  • Sever, K., Atagür, M., Tunçalp, M., Altay, L., Seki, Y., Sarıkanat, M., 2019. The effect of pumice powder on mechanical and thermal properties of polypropylene. Journal of Thermoplastic Composite Materials, 32, 1092–1106. https://doi.org/10.1177/0892705718785692
  • Sever, K., Aycan, Y., 2019. The effects of agro-waste reinforcing fillers as single and hybrid on mechanical and thermal properties of polypropylene. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 21, 395–408.
  • Sever, K., Tavman, I.H., Seki, Y., Turgut, A., Omastova, M., Ozdemir, I., 2013. Electrical and mechanical properties of expanded graphite/high density polyethylene nanocomposites. Composites Part B: Engineering, 53, 226–233. https://doi.org/10.1016/j.compositesb.2013.04.069
  • Sever, K., Yılmaz, M., 2020. Influence of wollastonite hybridization on the properties of artichoke-filled polypropylene composites. Emerging Materials Research, 9, 302–307. https://doi.org/10.1680/jemmr.18.00121
  • Shumigin, D., Tarasova, E., Krumme, A., Meier, P., 2011. Rheological and Mechanical Properties of Poly (lactic) Acid / Cellulose and LDPE / Cellulose Composites.
  • Sidi-Yacoub, B., Oudghiri, F., Belkadi, M., Rodríguez-Barroso, R., 2019. Characterization of lignocellulosic components in exhausted sugar beet pulp waste by TG/FTIR analysis. Journal of Thermal Analysis and Calorimetry, 138, 1801–1809. https://doi.org/10.1007/s10973-019-08179-8
  • Singh, A.K., Bedi, R., Khajuria, A., 2024. A review of composite materials based on rice straw and future trends for sustainable composites. Journal of Cleaner Production, 457, 142417. https://doi.org/10.1016/j.jclepro.2024.142417
  • Şen, İ., Tuna, S., Akkoyun Kurtlu, M., 2024. Evaluation of the use and performance of natural filler based polypropylene/leonardite composites. Journal of Cleaner Production, 480, 144105. https://doi.org/10.1016/j.jclepro.2024.144105
  • Tang, X., Yan, X., 2020. A review on the damping properties of fiber reinforced polymer composites. Journal of Industrial Textiles, 49(6), 693–721. https://doi.org/10.1177/1528083718795912
  • Tosun, F., 2017. ŞEKER PANCARI, Tepge Yayın: Ankara.
  • Tuna, S., Akkoyun Kurtlu, M., 2024. Effect of coupling agent on polylactic acid/polypropylene and polylactic acid/polyamide 6 foam composites. Journal of Applied Polymer Science, 141, e54849. https://doi.org/10.1002/app.54849
  • Vigneshwaran, S., Sundarakannan, R., John, K.M., Joel Johnson, R.D., Prasath, K.A., Ajith, S., Arumugaprabu, V., Uthayakumar, M., 2020. Recent advancement in the natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 277, 124109. https://doi.org/10.1016/j.jclepro.2020.124109
  • Yao, Z., Xia, M., Ge, L., Chen, T., Li, H., Ye, Y., Zheng, H., 2014. Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers and Polymers, 15, 1278–1287. https://doi.org/10.1007/s12221-014-1278-5
  • Yussuf, A.A., El-Fattah, A.I.A., Daramola, M.O., 2022. Development of polypropylene composites reinforced with wheat straw: Mechanical, thermal, and environmental performance. Heliyon, 8(3), e09128. https://doi.org/10.1016/j.heliyon.2022.e09128
  • Zhang, H., Wang, R., Liu, Z., 2023. Rice husk-filled polypropylene composites: Evaluation of processing, structure, and properties. Materials Today Sustainability, 21, 100332. https://doi.org/10.1016/j.mtsust.2023.100332
There are 47 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Barış Gökdemir 0009-0000-3035-1045

Kutlay Sever 0000-0002-5011-0588

Metehan Atagür 0000-0002-1916-457X

İbrahim Şen 0000-0003-2733-7191

Publication Date September 30, 2025
Submission Date February 25, 2025
Acceptance Date July 10, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Gökdemir, B., Sever, K., Atagür, M., Şen, İ. (2025). MANUFACTURING AND CHARACTERIZATION OF SUGAR BEET PULP PARTICLES FILLED POLYPROPYLENE MATRIX BIOCOMPOSITE. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(3), 791-805.