Review
BibTex RIS Cite

Cooking Fume–Related Exposure to Polycyclic Aromatic Hydrocarbons among Kitchen Workers: A Review

Year 2025, Volume: 4 Issue: 2, 279 - 290, 31.12.2025
https://doi.org/10.58625/jfng-3079

Abstract

In food service systems, improper cooking processes create substances containing significant amounts of fine and ultra fine particles. These substances contain organic substances such as polycyclic aromatic hydrocarbons and heterocyclic amines adsorbed on their surfaces. Polycyclic aromatic hydrocarbons consist of two or more fused aromatic rings of carbon and hydrogen atoms. These are harmful compounds that threaten human health due to their genotoxic and carcinogenic properties. Personnel working in commercial kitchens are at significant risk in terms of exposure to polycyclic aromatic hydrocarbons caused by high-temperature cooking methods and smoke. Benzo[a]pyrene is often used as an important indicator to assess the level of exposure to these compounds. The formation of polycyclic aromatic hydrocarbons increases especially during cooking methods such as barbecuing, frying and grilling. This situation increases the risk of employees experiencing serious health problems with long-term exposure. In order to reduce exposure, effective ventilation systems should be established in commercial kitchens, appropriate cooking methods should be applied, and employees should be made aware of the risks of polycyclic aromatic hydrocarbons by increasing the use of personal protective equipment.

References

  • Referans1 Singh, A., Nair, K.C., Kamal, R., Bihari, V., Gupta, M.K., Mudiam, M.K.R., Satyanarayana G.N.V., Raj, A., Haq, I., Shukla, N.K., Khan, A.H., & Srivastava A.K. (2016). Assessing hazardous risks of indoor airborne polycyclic aromatic hydrocarbons in the kitchen and its association with lung functions and urinary PAH metabolites in kitchen workers. Clinica Chimica Acta, 452, 204-13. https://doi.org/10.1016/j.cca.2015.11.020
  • Referans2 Zhang, Q., Gangupomu, R. H., Ramirez, D., & Zhu, Y. (2010). Measurement of ultrafine particles and other air pollutants emitted by cooking activities. International journal of environmental research and public health, 7(4), 1744-1759. https://doi.org/10.3390/ijerph7041744
  • Referans3 Chen, C. Y., Kuo, Y. C., Wang, S. M., Wu, K. R., Chen, Y. C., & Tsai, P. J. (2019). Techniques for predicting exposures to polycyclic aromatic hydrocarbons (PAHs) emitted from cooking processes for cooking workers. Aerosol and Air Quality Research, 19(2), 307-317. https://doi.org/10.4209/aaqr.2018.09.0346
  • Referans4 Abdullahi, K. L., Delgado-Saborit, J. M., & Harrison, R. M. (2013). Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmospheric Environment, 71, 260-294. https://doi.org/10.1016/j.atmosenv.2013.01.061
  • Referans5 Fang, G. C., Chang, C. N., Wu, Y. S., Fu, P. P. C., Yang, D. G., & Chia-Chium, C. (1999). Characterization of chemical species in PM2. 5 and PM10 aerosols in suburban and rural sites of central Taiwan. Science of the Total Environment, 234(1-3), 203-212. https://doi.org/10.1016/S0048-9697(99)00276-4
  • Referans6 Rose, N. L., & Ruppel, M. (2015). Environmental archives of contaminant particles. Environmental contaminants: Using natural archives to track sources and long-term trends of pollution, 187-221.Available from: https://link.springer.com/chapter/10.1007/978-94-017-9541-8_9.
  • Referans7 Buonanno, G., Morawska, L., & Stabile, L. J. A. E. (2009). Particle emission factors during cooking activities. Atmospheric Environment, 43(20), 3235-3242. https://doi.org/10.1016/j.atmosenv.2009.03.044
  • Referans8 International Agency for Research on Cancer (IARC). (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. https://publications.iarc.fr/
  • Referans9 Navruz Varli, S. (2020). Mutfak çalışanlarında pişirme dumanı kaynaklı sağlık risklerinin belirlenmesi [Doktora Tezi, Gazi Üniversitesi]. YÖK Tez Merkezi.
  • Referans10 Dennekamp, M., Howarth, S., Dick, C. A. J., Cherrie, J. W., Donaldson, K., & Seaton, A. (2001). Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occupational and environmental medicine, 58(8), 511-516. https://doi.org/10.1136/oem.58.8.511
  • Referans11 Wan, M. P., Wu, C. L., To, G. N. S., Chan, T. C., & Chao, C. Y. (2011). Ultrafine particles, and PM2. 5 generated from cooking in homes. Atmospheric environment, 45(34), 6141-6148. https://doi.org/10.1016/j.atmosenv.2011.08.036
  • Referans12 Sioutas, C., Delfino, R. J., & Singh, M. (2005). Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environmental health perspectives, 113(8), 947-955. https://doi.org/10.1289/ehp.7939
  • Referans13 Lai, A. C. K., & Ho, Y. W. (2008). Spatial concentration variation of cooking-emitted particles in a residential kitchen. Building and Environment, 43(5), 871-876. https://doi.org/10.1016/j.buildenv.2007.01.033
  • Referans14 Nasir, Z. A., & Colbeck, I. (2013). Particulate pollution in different housing types in a UK suburban location. Science of the Total Environment, 445, 165-176. https://doi.org/10.1016/j.scitotenv.2012.12.042
  • Referans15 Singh, L., Varshney, J. G., & Agarwal, T. (2016). Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food chemistry, 199, 768-781. https://doi.org/10.1016/j.foodchem.2015.12.074
  • Referans16 Zhao, Y., Hu, M., Slanina, S., & Zhang, Y. (2007). Chemical compositions of fine particulate organic matter emitted from Chinese cooking. Environmental science & technology, 41(1), 99-105. https://doi.org/10.1021/es0614518
  • Referans17 Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Frontiers in microbiology, 11, 562813. https://doi.org/10.3389/fmicb.2020.562813
  • Referans18 Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian journal of petroleum, 25(1), 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011
  • Referans19 Alver, E., Demirci, A., & Özcimder, M. (2012). Polisiklik aromatik hidrokarbonlar ve sağlığa etkileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(1), 45-52. https://dergipark.org.tr/en/pub/makufebed/issue/19422/206555
  • Referans20 Moret, S., & Conte, L. S. (2000). Polycyclic aromatic hydrocarbons in edible fats and oils: occurrence and analytical methods. Journal of chromatography A, 882(1-2), 245-253. https://doi.org/10.1016/S0021-9673(00)00079-0
  • Referans21 Demirtaş, B. (2018). Toplu beslenme sistemlerinde çalışan personelin polisiklik aromatik hidrokarbonlara maruziyeti [Yüksek Lisans Tezi, Hacettepe Üniversitesi]. YÖK Tez Merkezi.
  • Referans22 Moorthy, B., Chu, C., & Carlin, D. J. (2015). Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicological Sciences, 145(1), 5-15. https://doi.org/10.1093/toxsci/kfv040
  • Referans23 World Health Organization. (2010). Guidelines for indoor air quality: selected pollutants. https://iris.who.int/bitstream/handle/10665/260127/9789289002134-eng.pdf
  • Referans24 Ifegwu, O. C., & Anyakora, C. (2015). Polycyclic aromatic hydrocarbons: part I. Exposure. Advances in clinical chemistry, 72, 277-304. https://doi.org/10.1016/bs.acc.2015.08.001
  • Referans25 Jørgensen, R. B., Strandberg, B., Sjaastad, A. K., Johansen, A., & Svendsen, K. (2013). Simulated restaurant cook exposure to emissions of PAHs, mutagenic aldehydes, and particles from frying bacon. Journal of occupational and environmental hygiene, 10(3), 122-131. https://doi.org/10.1080/15459624.2012.755864
  • Referans26 See, S. W., & Balasubramanian, R. (2008). Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment, 42(39), 8852-8862. https://doi.org/10.1016/j.atmosenv.2008.09.011
  • Referans27 Lee, S. C., Ho, K. F., Chan, L. Y., Zielinska, B., & Chow, J. C. (2001). Polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in urban atmosphere of Hong Kong. Atmospheric Environment, 35(34), 5949-5960. https://doi.org/10.1016/S1352-2310(01)00374-0
  • Referans28 Stadler, R. H., & Lineback, D. R. (2009). Process-induced food toxicants. Occurrance, Formation, Mitigation and Health Risks. A John Wiley & Sons, Incc., Publication. Hoboken, New Jersey. DOI:10.1002/9780470430101
  • Referans29 Zheng, H., Xing, X., Hu, T., Zhang, Y., Zhang, J., Zhu, G., & Qi, S. (2018). Biomass burning contributed most to the human cancer risk exposed to the soil-bound PAHs from Chengdu Economic Region, western China. Ecotoxicology and Environmental Safety, 159, 63-70. https://doi.org/10.1016/j.ecoenv.2018.04.065
  • Referans30 EUROSTAT. (2022, March). Businesses In The Accommodation and Food Services Sector. https://ec.europa.eu/eurostat/statistics.
  • Referans31 Kizen A. (2020). Toplu gıda üretimi yapan işletmelerde iyi üretim uygulamalarının (GMP) sağlanması. Kizen Press.
  • Referans32 Wenzl, T., Simon, R., Anklam, E., & Kleiner, J. (2006). Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TrAC Trends in Analytical Chemistry, 25(7), 716-725. https://doi.org/10.1016/j.trac.2006.05.010
  • Referans33 Li, C. T., Lin, Y. C., Lee, W. J., & Tsai, P. J. (2003). Emission of polycyclic aromatic hydrocarbons and their carcinogenic potencies from cooking sources to the urban atmosphere. Environmental health perspectives, 111(4), 483-487. https://doi.org/10.1289/ehp.5518
  • Referans34 Lutier, S., Barbeau, D., Persoons, R., Marques, M., & Maitre, A. (2015, September). What are the best metabolites of gaseous polycyclic aromatic hydrocarbons to perform occupational biomonitoring? Toxicology Letters, 238(2),106. https://doi.org/10.1016/j.toxlet.2015.08.347
  • Referans35 Ke, Y., Huang, L., Xia, J., Xu, X., Liu, H., & Li, Y. R. (2016). Comparative study of oxidative stress biomarkers in urine of cooks exposed to three types of cooking-related particles. Toxicology Letters, 255, 36-42. https://doi.org/10.1016/j.toxlet.2016.05.017
  • Referans36 Köse, S., & Bilici, S. (2016). Mutfak ve yemekhane çalışanlarında iş sağlığı ve güvenliği risklerinin değerlendirilmesi. Beslenme ve Diyet Dergisi, 44(3), 239-247. https://beslenmevediyetdergisi.org/index.php/bdd/article/view/105
  • Referans37 To, W. M., Lau, Y. K., & Yeung, L. L. (2007). Emission of carcinogenic components from commercial kitchens in Hong Kong. Indoor and built environment, 16(1), 29-38. https://doi.org/10.1177/1420326X060745
  • Referans38 Wu, MT., Lin, PC., Pan, CH. & Peng, CY. (2019). Risk assessment of personal exposure to polycyclic aromatic hydrocarbons and aldehydes in three commercial cooking workplaces. Scientific Reports, 9: 1661. https://doi.org/10.1038/s41598-018-38082-5
  • Referans39 Navruz‐Varli, S., Bilici, S., Ari, A., Ertürk‐Ari, P., Ilhan, M. N., & O. Gaga, E. (2022). Organic pollutant exposure and health effects of cooking emissions on kitchen staff in food services. Indoor air, 32(8), e13093. https://doi.org/10.1111/ina.13093
  • Referans40 Akteruzzaman, M., Rahman, M. A., Rabbi, F. M., Asharof, S., Rofi, M. M., Hasan, M. K., Islam A.M., Khan M.A.R., Rahman, M.M. & Rahaman, M. H. (2023). The impacts of cooking and indoor air quality assessment in the southwestern region of Bangladesh. Heliyon, 9(1). https://doi.org/10.1016/j.heliyon.2023.e12852
  • Referans41 Shamsedini, N., Dehghani, M., Samaei, M. R., Nozari, M., Bahrany, S., Tabatabaei, Z., Azhdarpoor, A., Hoseini, M., Fararoei, M. & Roosta, S. (2023). Non-carcinogenic and cumulative risk assessment of exposure of kitchen workers in restaurants and local residents in the vicinity of polycyclic aromatic hydrocarbons. Scientific Reports, 13(1), 6649. https://doi.org/10.1038/s41598-023-33193-0
  • Referans42 Geng, X., & Bai, L. (2024). Characteristics of particulate matter and polycyclic aromatic hydrocarbon pollution generated during kitchen cooking and health risk assessment. Indoor and Built Environment, 33(4), 722-740. https://doi.org/10.1177/1420326X231219999

Mutfak Çalışanları Arasında Pişirme Dumanına Bağlı Polisiklik Aromatik Hidrokarbon Maruziyeti: Bir Derleme

Year 2025, Volume: 4 Issue: 2, 279 - 290, 31.12.2025
https://doi.org/10.58625/jfng-3079

Abstract

Yiyecek hizmetleri yapılan kurumlarda uygun olmayan pişirme işlemleri önemli miktarda ince ve ultra ince partikülleri içeren maddeler oluşturmaktadır. Bu maddeler, yüzeylerine adsorplanmış polisiklik aromatik hidrokarbonlar ve heterosiklik aminler gibi organik maddeler içermektedir. Polisiklik aromatik hidrokarbonlar; karbon ve hidrojen atomlarının iki ya da daha fazla kaynaşmış aromatik halkasından oluşmaktadır. Bunlar, genotoksik ve kanserojen özellikleri nedeniyle insan sağlığını tehdit eden zararlı bileşiklerdir. Ticari mutfaklarda çalışan personel, yüksek sıcaklıkta pişirme yöntemleri ve dumanın neden olduğu polisiklik aromatik hidrokarbon maruziyeti açısından önemli bir risk altındadır. Bu bileşiklerin maruziyet seviyesini değerlendirmek amacıyla Benzo[a]piren sıklıkla önemli gösterge olarak kullanılmaktadır. Özellikle mangal, kızartma ve ızgara gibi pişirme yöntemleri sırasında polisiklik aromatik hidrokarbonların oluşumu artmaktadır. Bu durum, çalışanların uzun süreli maruziyetle ciddi sağlık sorunları yaşama riskini artırmaktadır. Maruziyeti azaltmak için ticari mutfaklarda etkin havalandırma sistemlerinin kurulması, uygun pişirme yöntemlerinin uygulanması ve çalışanların kişisel koruyucu ekipman kullanımı arttırılarak polisiklik aromatik hidrokarbon riskleri konusunda farkındalık kazanmaları sağlanmalıdır.

References

  • Referans1 Singh, A., Nair, K.C., Kamal, R., Bihari, V., Gupta, M.K., Mudiam, M.K.R., Satyanarayana G.N.V., Raj, A., Haq, I., Shukla, N.K., Khan, A.H., & Srivastava A.K. (2016). Assessing hazardous risks of indoor airborne polycyclic aromatic hydrocarbons in the kitchen and its association with lung functions and urinary PAH metabolites in kitchen workers. Clinica Chimica Acta, 452, 204-13. https://doi.org/10.1016/j.cca.2015.11.020
  • Referans2 Zhang, Q., Gangupomu, R. H., Ramirez, D., & Zhu, Y. (2010). Measurement of ultrafine particles and other air pollutants emitted by cooking activities. International journal of environmental research and public health, 7(4), 1744-1759. https://doi.org/10.3390/ijerph7041744
  • Referans3 Chen, C. Y., Kuo, Y. C., Wang, S. M., Wu, K. R., Chen, Y. C., & Tsai, P. J. (2019). Techniques for predicting exposures to polycyclic aromatic hydrocarbons (PAHs) emitted from cooking processes for cooking workers. Aerosol and Air Quality Research, 19(2), 307-317. https://doi.org/10.4209/aaqr.2018.09.0346
  • Referans4 Abdullahi, K. L., Delgado-Saborit, J. M., & Harrison, R. M. (2013). Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmospheric Environment, 71, 260-294. https://doi.org/10.1016/j.atmosenv.2013.01.061
  • Referans5 Fang, G. C., Chang, C. N., Wu, Y. S., Fu, P. P. C., Yang, D. G., & Chia-Chium, C. (1999). Characterization of chemical species in PM2. 5 and PM10 aerosols in suburban and rural sites of central Taiwan. Science of the Total Environment, 234(1-3), 203-212. https://doi.org/10.1016/S0048-9697(99)00276-4
  • Referans6 Rose, N. L., & Ruppel, M. (2015). Environmental archives of contaminant particles. Environmental contaminants: Using natural archives to track sources and long-term trends of pollution, 187-221.Available from: https://link.springer.com/chapter/10.1007/978-94-017-9541-8_9.
  • Referans7 Buonanno, G., Morawska, L., & Stabile, L. J. A. E. (2009). Particle emission factors during cooking activities. Atmospheric Environment, 43(20), 3235-3242. https://doi.org/10.1016/j.atmosenv.2009.03.044
  • Referans8 International Agency for Research on Cancer (IARC). (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. https://publications.iarc.fr/
  • Referans9 Navruz Varli, S. (2020). Mutfak çalışanlarında pişirme dumanı kaynaklı sağlık risklerinin belirlenmesi [Doktora Tezi, Gazi Üniversitesi]. YÖK Tez Merkezi.
  • Referans10 Dennekamp, M., Howarth, S., Dick, C. A. J., Cherrie, J. W., Donaldson, K., & Seaton, A. (2001). Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occupational and environmental medicine, 58(8), 511-516. https://doi.org/10.1136/oem.58.8.511
  • Referans11 Wan, M. P., Wu, C. L., To, G. N. S., Chan, T. C., & Chao, C. Y. (2011). Ultrafine particles, and PM2. 5 generated from cooking in homes. Atmospheric environment, 45(34), 6141-6148. https://doi.org/10.1016/j.atmosenv.2011.08.036
  • Referans12 Sioutas, C., Delfino, R. J., & Singh, M. (2005). Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environmental health perspectives, 113(8), 947-955. https://doi.org/10.1289/ehp.7939
  • Referans13 Lai, A. C. K., & Ho, Y. W. (2008). Spatial concentration variation of cooking-emitted particles in a residential kitchen. Building and Environment, 43(5), 871-876. https://doi.org/10.1016/j.buildenv.2007.01.033
  • Referans14 Nasir, Z. A., & Colbeck, I. (2013). Particulate pollution in different housing types in a UK suburban location. Science of the Total Environment, 445, 165-176. https://doi.org/10.1016/j.scitotenv.2012.12.042
  • Referans15 Singh, L., Varshney, J. G., & Agarwal, T. (2016). Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food chemistry, 199, 768-781. https://doi.org/10.1016/j.foodchem.2015.12.074
  • Referans16 Zhao, Y., Hu, M., Slanina, S., & Zhang, Y. (2007). Chemical compositions of fine particulate organic matter emitted from Chinese cooking. Environmental science & technology, 41(1), 99-105. https://doi.org/10.1021/es0614518
  • Referans17 Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Frontiers in microbiology, 11, 562813. https://doi.org/10.3389/fmicb.2020.562813
  • Referans18 Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian journal of petroleum, 25(1), 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011
  • Referans19 Alver, E., Demirci, A., & Özcimder, M. (2012). Polisiklik aromatik hidrokarbonlar ve sağlığa etkileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(1), 45-52. https://dergipark.org.tr/en/pub/makufebed/issue/19422/206555
  • Referans20 Moret, S., & Conte, L. S. (2000). Polycyclic aromatic hydrocarbons in edible fats and oils: occurrence and analytical methods. Journal of chromatography A, 882(1-2), 245-253. https://doi.org/10.1016/S0021-9673(00)00079-0
  • Referans21 Demirtaş, B. (2018). Toplu beslenme sistemlerinde çalışan personelin polisiklik aromatik hidrokarbonlara maruziyeti [Yüksek Lisans Tezi, Hacettepe Üniversitesi]. YÖK Tez Merkezi.
  • Referans22 Moorthy, B., Chu, C., & Carlin, D. J. (2015). Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicological Sciences, 145(1), 5-15. https://doi.org/10.1093/toxsci/kfv040
  • Referans23 World Health Organization. (2010). Guidelines for indoor air quality: selected pollutants. https://iris.who.int/bitstream/handle/10665/260127/9789289002134-eng.pdf
  • Referans24 Ifegwu, O. C., & Anyakora, C. (2015). Polycyclic aromatic hydrocarbons: part I. Exposure. Advances in clinical chemistry, 72, 277-304. https://doi.org/10.1016/bs.acc.2015.08.001
  • Referans25 Jørgensen, R. B., Strandberg, B., Sjaastad, A. K., Johansen, A., & Svendsen, K. (2013). Simulated restaurant cook exposure to emissions of PAHs, mutagenic aldehydes, and particles from frying bacon. Journal of occupational and environmental hygiene, 10(3), 122-131. https://doi.org/10.1080/15459624.2012.755864
  • Referans26 See, S. W., & Balasubramanian, R. (2008). Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment, 42(39), 8852-8862. https://doi.org/10.1016/j.atmosenv.2008.09.011
  • Referans27 Lee, S. C., Ho, K. F., Chan, L. Y., Zielinska, B., & Chow, J. C. (2001). Polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in urban atmosphere of Hong Kong. Atmospheric Environment, 35(34), 5949-5960. https://doi.org/10.1016/S1352-2310(01)00374-0
  • Referans28 Stadler, R. H., & Lineback, D. R. (2009). Process-induced food toxicants. Occurrance, Formation, Mitigation and Health Risks. A John Wiley & Sons, Incc., Publication. Hoboken, New Jersey. DOI:10.1002/9780470430101
  • Referans29 Zheng, H., Xing, X., Hu, T., Zhang, Y., Zhang, J., Zhu, G., & Qi, S. (2018). Biomass burning contributed most to the human cancer risk exposed to the soil-bound PAHs from Chengdu Economic Region, western China. Ecotoxicology and Environmental Safety, 159, 63-70. https://doi.org/10.1016/j.ecoenv.2018.04.065
  • Referans30 EUROSTAT. (2022, March). Businesses In The Accommodation and Food Services Sector. https://ec.europa.eu/eurostat/statistics.
  • Referans31 Kizen A. (2020). Toplu gıda üretimi yapan işletmelerde iyi üretim uygulamalarının (GMP) sağlanması. Kizen Press.
  • Referans32 Wenzl, T., Simon, R., Anklam, E., & Kleiner, J. (2006). Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TrAC Trends in Analytical Chemistry, 25(7), 716-725. https://doi.org/10.1016/j.trac.2006.05.010
  • Referans33 Li, C. T., Lin, Y. C., Lee, W. J., & Tsai, P. J. (2003). Emission of polycyclic aromatic hydrocarbons and their carcinogenic potencies from cooking sources to the urban atmosphere. Environmental health perspectives, 111(4), 483-487. https://doi.org/10.1289/ehp.5518
  • Referans34 Lutier, S., Barbeau, D., Persoons, R., Marques, M., & Maitre, A. (2015, September). What are the best metabolites of gaseous polycyclic aromatic hydrocarbons to perform occupational biomonitoring? Toxicology Letters, 238(2),106. https://doi.org/10.1016/j.toxlet.2015.08.347
  • Referans35 Ke, Y., Huang, L., Xia, J., Xu, X., Liu, H., & Li, Y. R. (2016). Comparative study of oxidative stress biomarkers in urine of cooks exposed to three types of cooking-related particles. Toxicology Letters, 255, 36-42. https://doi.org/10.1016/j.toxlet.2016.05.017
  • Referans36 Köse, S., & Bilici, S. (2016). Mutfak ve yemekhane çalışanlarında iş sağlığı ve güvenliği risklerinin değerlendirilmesi. Beslenme ve Diyet Dergisi, 44(3), 239-247. https://beslenmevediyetdergisi.org/index.php/bdd/article/view/105
  • Referans37 To, W. M., Lau, Y. K., & Yeung, L. L. (2007). Emission of carcinogenic components from commercial kitchens in Hong Kong. Indoor and built environment, 16(1), 29-38. https://doi.org/10.1177/1420326X060745
  • Referans38 Wu, MT., Lin, PC., Pan, CH. & Peng, CY. (2019). Risk assessment of personal exposure to polycyclic aromatic hydrocarbons and aldehydes in three commercial cooking workplaces. Scientific Reports, 9: 1661. https://doi.org/10.1038/s41598-018-38082-5
  • Referans39 Navruz‐Varli, S., Bilici, S., Ari, A., Ertürk‐Ari, P., Ilhan, M. N., & O. Gaga, E. (2022). Organic pollutant exposure and health effects of cooking emissions on kitchen staff in food services. Indoor air, 32(8), e13093. https://doi.org/10.1111/ina.13093
  • Referans40 Akteruzzaman, M., Rahman, M. A., Rabbi, F. M., Asharof, S., Rofi, M. M., Hasan, M. K., Islam A.M., Khan M.A.R., Rahman, M.M. & Rahaman, M. H. (2023). The impacts of cooking and indoor air quality assessment in the southwestern region of Bangladesh. Heliyon, 9(1). https://doi.org/10.1016/j.heliyon.2023.e12852
  • Referans41 Shamsedini, N., Dehghani, M., Samaei, M. R., Nozari, M., Bahrany, S., Tabatabaei, Z., Azhdarpoor, A., Hoseini, M., Fararoei, M. & Roosta, S. (2023). Non-carcinogenic and cumulative risk assessment of exposure of kitchen workers in restaurants and local residents in the vicinity of polycyclic aromatic hydrocarbons. Scientific Reports, 13(1), 6649. https://doi.org/10.1038/s41598-023-33193-0
  • Referans42 Geng, X., & Bai, L. (2024). Characteristics of particulate matter and polycyclic aromatic hydrocarbon pollution generated during kitchen cooking and health risk assessment. Indoor and Built Environment, 33(4), 722-740. https://doi.org/10.1177/1420326X231219999
There are 42 citations in total.

Details

Primary Language English
Subjects Food Properties, Food Nutritional Balance, Nutrition and Dietetics (Other)
Journal Section Review
Authors

Ayden Özekinci 0000-0001-8502-181X

Submission Date May 28, 2025
Acceptance Date December 4, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 4 Issue: 2

Cite

APA Özekinci, A. (2025). Cooking Fume–Related Exposure to Polycyclic Aromatic Hydrocarbons among Kitchen Workers: A Review. Toros University Journal of Food, Nutrition and Gastronomy, 4(2), 279-290. https://doi.org/10.58625/jfng-3079
AMA Özekinci A. Cooking Fume–Related Exposure to Polycyclic Aromatic Hydrocarbons among Kitchen Workers: A Review. JFNG. December 2025;4(2):279-290. doi:10.58625/jfng-3079
Chicago Özekinci, Ayden. “Cooking Fume–Related Exposure to Polycyclic Aromatic Hydrocarbons Among Kitchen Workers: A Review”. Toros University Journal of Food, Nutrition and Gastronomy 4, no. 2 (December 2025): 279-90. https://doi.org/10.58625/jfng-3079.
EndNote Özekinci A (December 1, 2025) Cooking Fume–Related Exposure to Polycyclic Aromatic Hydrocarbons among Kitchen Workers: A Review. Toros University Journal of Food, Nutrition and Gastronomy 4 2 279–290.
IEEE A. Özekinci, “Cooking Fume–Related Exposure to Polycyclic Aromatic Hydrocarbons among Kitchen Workers: A Review”, JFNG, vol. 4, no. 2, pp. 279–290, 2025, doi: 10.58625/jfng-3079.
ISNAD Özekinci, Ayden. “Cooking Fume–Related Exposure to Polycyclic Aromatic Hydrocarbons Among Kitchen Workers: A Review”. Toros University Journal of Food, Nutrition and Gastronomy 4/2 (December2025), 279-290. https://doi.org/10.58625/jfng-3079.
JAMA Özekinci A. Cooking Fume–Related Exposure to Polycyclic Aromatic Hydrocarbons among Kitchen Workers: A Review. JFNG. 2025;4:279–290.
MLA Özekinci, Ayden. “Cooking Fume–Related Exposure to Polycyclic Aromatic Hydrocarbons Among Kitchen Workers: A Review”. Toros University Journal of Food, Nutrition and Gastronomy, vol. 4, no. 2, 2025, pp. 279-90, doi:10.58625/jfng-3079.
Vancouver Özekinci A. Cooking Fume–Related Exposure to Polycyclic Aromatic Hydrocarbons among Kitchen Workers: A Review. JFNG. 2025;4(2):279-90.