Review
BibTex RIS Cite

Alternatif ve sürdürülebilir bir gıda kaynağı olarak algler

Year 2022, Volume: 1 Issue: 1, 101 - 117, 25.12.2022

Abstract

Algler; güneş ışığı, su ve karbondioksiti biyokütleye dönüştürebilen hücre fabrikaları olarak bilinirler. Yaygın olarak büyüklüklerine göre sınıflandırılan algler (mikroalgler ve makroalgler), çok fazla çeşitlilik gösterebilen heterojen organizma gruplarıdır. Algler türe, yetiştiği bölge, mevsim, hasat şekli, depolama koşulları ve gıda işleme tekniklerine bağlı olarak değişiklik göstermek ile birlikte, yapılarında yüksek miktarda lipit (%20-80), protein (%39-71) ve diyet lifi içermektedir. Ayrıca sterol, vitamin, pigment, α-tokoferol, β-karoten, glutatyon, askorbik asit, flavonoidler, hidrokinonlar, fikosiyaninler, prolin, fenolik bileşikler, poliaminler ve özellikle çoklu doymamış yağ asitleri (ω-3 yağ asitleri) içerikleri nedeniyle iyi bir besin kaynağı olarak kabul edilmekte ve fonksiyonel gıda üretiminde kullanılmaktadır. Alglerin barındırdıkları bu değerli biyoaktif bileşenler sayesinde antioksidan, antimikrobiyal, antiinflamatuar ve antikarsinojen etkiye sahip oldukları düşünülmektedir. Uzun yıllardır insan diyetinin bir parçası olarak olan alglerin tüketiminin en fazla görüldüğü ülke Japonya’dır. Alg üretimi konusunda ise Çin ve Endonezya önderlik etmektedir. Algler, gıda olarak kullanımının yanı sıra, gıda takviyesi üretiminde, hayvan yemi olarak, kozmetik ve ilaç endüstrisinde, biyoenerji ve biyoyakıt üretimi sırasında hammadde olarak tercih edilmektedir. Algler azot sabitleyici biyogübreler olarak kullanımlarının yanı sıra, aynı zamanda sera gazı emisyonunun azaltılması ve biyolojik iyileştirme uygulamalarında kullanılmaktadır.
Bu çalışmada alglerin bileşimi, özellikleri, sınıflandırılmaları, üretimi ve hasatı, ayrıca alg yağı hakkında bilgi verilmiştir. Çalışmanın amacı sürdürülebilir, alternatif, yenilikçi ve daha iyi değerlendirilme potansiyeli oldukça yüksek olan bir kaynağa dikkat çekmek, özellikle bir ω-3 kaynağı olarak alglerin tanıtılması ve alg kullanımı ile zenginleştirilmiş gıdaların takviye edici olarak insan diyetinde yer alması konusunda bilgi sunmaktır.

Thanks

Derya DENİZ ŞİRİNYILDIZ, TÜBİTAK 2211-A ve YÖK 100/2000 Doktora Burs Programları tarafından desteklenmiştir.

References

  • ABDUL, Q.A., CHOI, R.J., JUNG, H.A., CHOI, J.S. (2016). Health Benefit of Fucosterol from Marine Algae: A Review. Journal of the Science of Food and Agriculture. 96, 1856-1866.
  • ABUBAKAR, L.U., MUTIE, A.M., KENYA, E.U. (2012). Characterization of Algae Oil (Oilgae) and Its Potential as Biofuel in Kenya. Journal of Applied Phytotechnology in Environmental Sanitation. 1, 147-153.
  • AKYIL, S., İLTER, I., KOÇ, M., KAYMAK-ERTEKİN, F. (2016). Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları. Academic Food Journal/Akademik GIDA. 14.
  • ARTERBURN, L.M., OKEN, H.A., HALL, E.B., HAMERSLEY, J., KURATKO, C.N., HOFFMAN, J.P. (2008). Algal-oil Capsules and Cooked Salmon: Nutritionally Equivalent Sources of Docosahexaenoic Acid. Journal of the American Dietetic Association. 108, 1204-1209.
  • AYDIN, G. (2014). Alg Yağından Lipaz Katalizli Biyodizel Üretimi. Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü
  • AYDOĞDU, H. (2019). Alg Yağı ve Alg Yağı Esterlerinin Poli(Laktik Asit) için Plastikleştirici Olarak Kullanılabilme Potansiyelinin İncelenmesi. Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü
  • BALASUBRAMANİAN, S., ALLEN, J.D., KANITKAR, A., BOLDOR, D. (2011). Oil Extraction from Scenedesmus obliquus Using a Continuous Microwave System–Design, Optimization, and Quality Characterization. Bioresource Technology. 102, 3396-3403.
  • BECKER, E.W. (2007). Micro-algae As a Source of Protein. Biotechnology Advances. 25, 207-210.
  • BELLOU, S., AGGELIS, G. (2013). Biochemical Activities in Chlorella sp. and Nannochloropsis salina During Lipid and Sugar Synthesis in a Lab-Scale Open Pond Simulating Reactor. Journal of Biotechnology. 164, 318-329.
  • BLOUIN, N., CALDER, B.L., PERKINS, B., BRAWLEY, S.H. (2006). Sensory and Fatty Acid Analyses of Two Atlantic Species of Porphyra (Rhodophyta). Journal of Applied Phycology. 18, 79.
  • CEBİ, N., YILMAZ, M.T., SAGDIC, O., YUCE, H., YELBOGA, E. (2017). Prediction of Peroxide Value in Omega-3 Rich Microalgae Oil by ATR-FTIR Spectroscopy Combined with Chemometrics. Food Chemistry. 225, 188-196.
  • CHEE, C.P., GALLAHER, J.J., DJORDJEVIC, D., FARAJI, H., MCCLEMENTS, D.J., DECKER, E.A., COUPLAND, J. N. (2005). Chemical and Sensory Analysis of Strawberry Flavoured Yogurt Supplemented with an Algae Oil Emulsion. Journal of Dairy Research. 72, 311-316.
  • CHEE, C.P., DJORDJEVIC, D., FARAJI, H., DECKER, E.A., HOLLENDER, R., MCCLEMENTS, D. J., COUPLAND, J.N. (2007). Sensory Properties of Vanilla and Strawberry Flavored Ice Cream Supplemented with Omega-3 Fatty Acids. Milchwissenschaft. 62, 66-69.
  • CHEN, X.W., CHEN, Y.J., WANG, J.M., GUO, J., YİN, S.W., YANG, X.Q. (2016). Phytosterol Structured Algae Oil Nanoemulsions and Powders: Improving Antioxidant and Flavor Properties. Food & Function. 7, 3694-3702.
  • CHISTI, Y. (2007). Biodiesel from Microalgae. Biotechnology Advances. 25, 294-306.
  • COFRADES, S., LÓPEZ-LÓPEZ, I., SOLAS, M.T., BRAVO, L., JIMÉNEZ-COLMENERO, F. (2008). Influence of Different Types and Proportions of Added Edible Seaweeds on Characteristics of Low-Salt Gel/Emulsion Meat Systems. Meat Science. 79, 767-776.
  • DE CIRIANO, M.G.I., REHECHO, S., CALVO, M.I., CAVERO, R.Y., NAVARRO, Í., ASTIASARÁN, I., ANSORENA, D. (2010). Effect of Lyophilized Water Extracts of Melissa officinalis on the Stability of Algae and Linseed Oil-in-Water Emulsion to be used as a Functional Ingredient in Meat Products. Meat Science. 85, 373-377.
  • DEMİRBAS, A., DEMİRBAS, M.F. (2011). Importance of Algae Oil as a Source of Biodiesel. Energy Conversion and Management. 52, 163-170.
  • DEMİRİZ, T. (2008). Bazı Alglerin Antibakteriyal Etkileri. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü
  • DRAGET, K.I., SMİDSROD, O., SKJAK‐BRÆK, G. (2005). Alginates from Algae. Biopolymers Online: Biology, Chemistry, Biotechnology, Applications. 6.
  • ELEREN, S.Ç., ÖNER, B. (2019). Sürdürülebilir ve Çevre Dostu Biyoyakıt Hammaddesi: Mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 25, 304-319.
  • FAHY, E., SUBRAMANIAM, S., BROWN, H.A., GLASS, C.K., MERRILL JR, A.H., MURPHY, R. C., SHIMIZU, T. (2005). A Comprehensive Classification System for Lipids. European Journal of Lipid Science and Technology. 107, 337-364.
  • FRANCAVİLLA, M., TROTTA, P., LUQUE, R. (2010). Phytosterols from Dunaliella tertiolecta and Dunaliella salina: A Potentially Novel İndustrial Application. Bioresource Technology. 101, 4144-4150.
  • GRAEVE, M., KATTNER, G., WIENCKE, C., KARSTEN, U. (2002). Fatty Acid Composition of Arctic and Antarctic Macroalgae: Indicator of Phylogenetic and Trophic Relationships. Marine Ecology Progress Series. 231, 67-74.
  • GRATTAN, B.J. (2013). Plant Sterols as Anticancer Nutrients: Evidence for Their Role in Breast Cancer. Nutrients. 5, 359-387.
  • GUBELIT, Y.I., MAKHUTOVA, O.N., SUSHCHIK, N.N., KOLMAKOVA, A.A., KALACHOVA, G.S., GLADYSHEV, M.I. (2015). Fatty Acid and Elemental Composition of Littoral “Green Tide” Algae from the Gulf of Finland, the Baltic Sea. Journal of Applied Phycology. 27, 375-386.
  • HOLDT, S.L., KRAAN, S. (2011). Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. Journal of Applied Phycology. 23, 543-597.
  • JEZ, S., SPINELLI, D., FIERRO, A., DIBENEDETTO, A., ARESTA, M., BUSI, E., BASOSI, R. (2017). Comparative Life Cycle Assessment Study on Environmental Impact of Oil Production from Micro-Algae and Terrestrial Oilseed Crops. Bioresource Technology. 239, 266-275.
  • JIANG, Y., CHEN, F. (2000). Effects of Temperature and Temperature Shift on Docosahexaenoic Acid Production by the Marine Microalge Crypthecodinium cohnii. Journal of the American Oil Chemists' Society. 77, 613-617.
  • KAYNAKCI, E. (2012). Sağlıklı Et Ürünlerinin Geliştirilmesi Amacıyla Alternatif Yağ Kaynaklarının Sosis Model Sisteminde Uygulama İmkânlarının Araştırılması. Doktora Tezi, Süleymen Demirel Üniversitesi Fen Bilimleri Enstitüsü
  • KRIS-ETHERTON, P.M., HARRIS, W. S., APPEL, L.J. (2002). Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation. 106, 2747-2757.
  • LEAL, M.C., MUNRO, M.H., BLUNT, J.W., PUGA, J., JESUS, B., CALADO, R., MADEIRA, C. (2013). Biogeography and Biodiscovery Hotspots of Macroalgal Marine Natural Products. Natural Product Reports. 30, 1380-1390.
  • LENIHAN-GEELS, G., BISHOP, K.S., FERGUSON, L.R. (2013). Alternative Sources of Omega-3 Fats: Can We Find a Sustainable Substitute for Fish?. Nutrients. 5, 1301-1315.
  • MAKRI, A., BELLOU, S., BIRKOU, M., PAPATREHAS, K., DOLAPSAKIS, N.P., BOKAS, D., AGGELIS, G. (2011). Lipid Synthesized by Micro‐Algae Grown in Laboratory‐and İndustrial‐Scale Bioreactors. Engineering in Life Sciences. 11, 52-58.
  • MERCER, P., ARMENTA, R.E. (2011). Developments in Oil Extraction from Microalgae. European Journal of Lipid Science and Technology. 113, 539-547.
  • MCCAULEY, J.I., MEYER, B.J., WINBERG, P.C., RANSON, M., SKROPETA, D. (2015). Selecting Australian Marine Macroalgae Based on the Fatty Acid Composition and Anti-Inflammatory Activity. Journal of Applied Phycology. 27, 2111-2121.
  • MWANGI, J.K., LEE, W.J., WHANG, L.M., WU, T.S., CHEN, W.H., CHANG, J.S., CHEN, C.L. (2015). Microalgae Oil: Algae Cultivation and Harvest, Algae Residue Torrefaction and Diesel Engine Emissions Tests. Aerosol and Air Quality Research. 15, 81-98.
  • ÖZÇİMEN, D. (2018). Chlorella protothecoides Mikroalg Yağının Botrytis cinerea ve Aspergillus niger Küflerine Karşı Antifungal Etkisinin İncelenmesi. Journal of Tekirdag Agricultural Faculty. 15, 45-52.
  • PATIL, V., REITAN, K.I., KNUTSEN, G., MORTENSEN, L.M., KÄLLQVİST, T., OLSEN, E., GISLERØD, H.R. (2005). Microalgae as Source of Polyunsaturated Fatty Acids for Aquaculture. Plant Biology. 6, 57-65.
  • PAUL ABISHEK, M., PATEL, J., PREM RAJAN, A. (2014). Algae Oil: A Sustainable Renewable Fuel of Future. Biotechnology Research International. 2014.
  • PEREIRA, C.M., NUNES, C.F., ZAMBOTTI-VILLELA, L., STREIT, N.M., DIAS, D., PINTO, E., COLEPICOLO, P. (2017). Extraction of Sterols in Brown Macroalgae from Antarctica and Their İdentification by Liquid Chromatography Coupled with Tandem Mass Spectrometry. Journal of Applied Phycology. 29, 751-757.
  • PRAGYA, N., PANDEY, K.K., SAHOO, P.K. (2013). A Review on Harvesting, Oil Extraction and Biofuels Production Technologies from Microalgae. Renewable And Sustainable Energy Reviews. 24, 159-171.
  • SCHLAGERMANN, P., GOTTLICHER, G., DILLSCHNEIDER, R., ROSELLO-SASTRE, R., POSTEN, C. (2012). Composition of Algal Oil and Its Potential as Biofuel. Journal of Combustion. 2012.
  • SCHMID, M., GUIHÉNEUF, F., STENGEL, D.B. (2014). Fatty Acid Contents and Profiles of 16 Macroalgae Collected from the Irish Coast at Two Seasons. Journal of Applied Phycology. 26, 451-463.
  • SHAH, S., SHARMA, A., GUPTA, M.N. (2005). Extraction of Oil from Jatropha curcas L. Seed Kernels by Combination of Ultrasonication and Aqueous Enzymatic Oil Extraction. Bioresource Technology. 96, 121-123.
  • SZENTMIHÁLYI, K., VINKLER, P., LAKATOS, B., ILLÉS, V., THEN, M. (2002). Rose Hip (Rosa canina L.) Oil Obtained from Waste Hip Seeds by Different Extraction Methods. Bioresource Technology. 82, 195-201
  • TAKAHATA, K., MONOBE, K.I., TADA, M., WEBER, P.C. (1998). The Benefits and Risks of n-3 Polyunsaturated Fatty Acids. Bioscience, Biotechnology and Biochemistry. 62, 2079-2085.
  • VAN GINNEKEN, V.J., HELSPER, J.P., DE VISSER, W., VAN KEULEN, H., BRANDENBURG, W. A. (2011). Polyunsaturated Fatty Acids in Various Macroalgal Species from North Atlantic and Tropical Seas. Lipids in Health and Disease. 10, 104.
  • VOLKMAN, J.K., JEFFREY, S.W., NICHOLS, P.D., ROGERS, G.I., GARLAND, C.D. (1989). Fatty Acid and Lipid Composition of 10 Species of Microalgae Used in Mariculture. Journal of Experimental Marine Biology and Ecology. 128, 219-240.
  • WELLS, M.L., POTIN, P., CRAIGIE, J.S., RAVEN, J.A., MERCHANT, S.S., HELLIWELL, K.E., BRAWLEY, S.H. (2017). Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. Journal of Applied Phycology. 29, 949-982.
  • WIYARNO, B., YUNUS, R.M., MEL, M. (2011). Extraction of Algae Oil from Nannocloropsis sp.: A Study of Soxhlet and Ultrasonic-Assisted Extractions. Journal of Applied Sciences. 11, 3607-3612.
  • YILMAZ, A. (2019). Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği. Academic Food Journal/Akademik GIDA. 17.

Algae as an alternative and sustainable food source

Year 2022, Volume: 1 Issue: 1, 101 - 117, 25.12.2022

Abstract

Algae are known as cell factories that can convert sunlight, water and carbon dioxide into biomass. Algae, commonly classified by their size (microalgae and macroalgae), are heterogeneous groups of organisms that can vary greatly. Algae contain high amounts of lipid (20-80%), protein (39-71%) and dietary fiber depending on species, the region where it grows, the season, the way of harvesting, storage conditions and food processing techniques. Moreover, due to their there are sterol, vitamin, pigment, α-tocopherol, β-carotene, glutathione, ascorbic acid, flavonoids, hydroquinones, phycocyanins, proline, phenolic compounds, polyamines and polyunsaturated fatty acids (ω-3 fatty acids) contents, they are considered as good food sources and are used in the production of functional food. Thanks to these valuable bioactive components, algae are thought to have antioxidant, antimicrobial, anti-inflammatory and anticarcinogenic effects. The country with the highest consumption of algae, which is a part of the human diet for many years, is Japan. China and Indonesia lead the way in algae production. In addition to its use as food, algae is preferred as a raw material in the production of food supplements, animal feed, in the cosmetics and pharmaceutical industries, and in the production of bioenergy and biofuels. Algae are also used in greenhouse gas emission reduction and biological remediation applications, as well as their usage as nitrogen-fixing biofertilizers.
In this study; information about the composition, properties, classification, production and harvesting of algae as well as algal oil is given. The aim of the study is to draw attention to a resource that is sustainable, alternative, innovative and has a high potential for better evaluation and to provide information about the introduction of algae as a source of ω-3 and the inclusion of foods enriched with the use of algae in the human diet as supplements.

References

  • ABDUL, Q.A., CHOI, R.J., JUNG, H.A., CHOI, J.S. (2016). Health Benefit of Fucosterol from Marine Algae: A Review. Journal of the Science of Food and Agriculture. 96, 1856-1866.
  • ABUBAKAR, L.U., MUTIE, A.M., KENYA, E.U. (2012). Characterization of Algae Oil (Oilgae) and Its Potential as Biofuel in Kenya. Journal of Applied Phytotechnology in Environmental Sanitation. 1, 147-153.
  • AKYIL, S., İLTER, I., KOÇ, M., KAYMAK-ERTEKİN, F. (2016). Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları. Academic Food Journal/Akademik GIDA. 14.
  • ARTERBURN, L.M., OKEN, H.A., HALL, E.B., HAMERSLEY, J., KURATKO, C.N., HOFFMAN, J.P. (2008). Algal-oil Capsules and Cooked Salmon: Nutritionally Equivalent Sources of Docosahexaenoic Acid. Journal of the American Dietetic Association. 108, 1204-1209.
  • AYDIN, G. (2014). Alg Yağından Lipaz Katalizli Biyodizel Üretimi. Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü
  • AYDOĞDU, H. (2019). Alg Yağı ve Alg Yağı Esterlerinin Poli(Laktik Asit) için Plastikleştirici Olarak Kullanılabilme Potansiyelinin İncelenmesi. Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü
  • BALASUBRAMANİAN, S., ALLEN, J.D., KANITKAR, A., BOLDOR, D. (2011). Oil Extraction from Scenedesmus obliquus Using a Continuous Microwave System–Design, Optimization, and Quality Characterization. Bioresource Technology. 102, 3396-3403.
  • BECKER, E.W. (2007). Micro-algae As a Source of Protein. Biotechnology Advances. 25, 207-210.
  • BELLOU, S., AGGELIS, G. (2013). Biochemical Activities in Chlorella sp. and Nannochloropsis salina During Lipid and Sugar Synthesis in a Lab-Scale Open Pond Simulating Reactor. Journal of Biotechnology. 164, 318-329.
  • BLOUIN, N., CALDER, B.L., PERKINS, B., BRAWLEY, S.H. (2006). Sensory and Fatty Acid Analyses of Two Atlantic Species of Porphyra (Rhodophyta). Journal of Applied Phycology. 18, 79.
  • CEBİ, N., YILMAZ, M.T., SAGDIC, O., YUCE, H., YELBOGA, E. (2017). Prediction of Peroxide Value in Omega-3 Rich Microalgae Oil by ATR-FTIR Spectroscopy Combined with Chemometrics. Food Chemistry. 225, 188-196.
  • CHEE, C.P., GALLAHER, J.J., DJORDJEVIC, D., FARAJI, H., MCCLEMENTS, D.J., DECKER, E.A., COUPLAND, J. N. (2005). Chemical and Sensory Analysis of Strawberry Flavoured Yogurt Supplemented with an Algae Oil Emulsion. Journal of Dairy Research. 72, 311-316.
  • CHEE, C.P., DJORDJEVIC, D., FARAJI, H., DECKER, E.A., HOLLENDER, R., MCCLEMENTS, D. J., COUPLAND, J.N. (2007). Sensory Properties of Vanilla and Strawberry Flavored Ice Cream Supplemented with Omega-3 Fatty Acids. Milchwissenschaft. 62, 66-69.
  • CHEN, X.W., CHEN, Y.J., WANG, J.M., GUO, J., YİN, S.W., YANG, X.Q. (2016). Phytosterol Structured Algae Oil Nanoemulsions and Powders: Improving Antioxidant and Flavor Properties. Food & Function. 7, 3694-3702.
  • CHISTI, Y. (2007). Biodiesel from Microalgae. Biotechnology Advances. 25, 294-306.
  • COFRADES, S., LÓPEZ-LÓPEZ, I., SOLAS, M.T., BRAVO, L., JIMÉNEZ-COLMENERO, F. (2008). Influence of Different Types and Proportions of Added Edible Seaweeds on Characteristics of Low-Salt Gel/Emulsion Meat Systems. Meat Science. 79, 767-776.
  • DE CIRIANO, M.G.I., REHECHO, S., CALVO, M.I., CAVERO, R.Y., NAVARRO, Í., ASTIASARÁN, I., ANSORENA, D. (2010). Effect of Lyophilized Water Extracts of Melissa officinalis on the Stability of Algae and Linseed Oil-in-Water Emulsion to be used as a Functional Ingredient in Meat Products. Meat Science. 85, 373-377.
  • DEMİRBAS, A., DEMİRBAS, M.F. (2011). Importance of Algae Oil as a Source of Biodiesel. Energy Conversion and Management. 52, 163-170.
  • DEMİRİZ, T. (2008). Bazı Alglerin Antibakteriyal Etkileri. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü
  • DRAGET, K.I., SMİDSROD, O., SKJAK‐BRÆK, G. (2005). Alginates from Algae. Biopolymers Online: Biology, Chemistry, Biotechnology, Applications. 6.
  • ELEREN, S.Ç., ÖNER, B. (2019). Sürdürülebilir ve Çevre Dostu Biyoyakıt Hammaddesi: Mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 25, 304-319.
  • FAHY, E., SUBRAMANIAM, S., BROWN, H.A., GLASS, C.K., MERRILL JR, A.H., MURPHY, R. C., SHIMIZU, T. (2005). A Comprehensive Classification System for Lipids. European Journal of Lipid Science and Technology. 107, 337-364.
  • FRANCAVİLLA, M., TROTTA, P., LUQUE, R. (2010). Phytosterols from Dunaliella tertiolecta and Dunaliella salina: A Potentially Novel İndustrial Application. Bioresource Technology. 101, 4144-4150.
  • GRAEVE, M., KATTNER, G., WIENCKE, C., KARSTEN, U. (2002). Fatty Acid Composition of Arctic and Antarctic Macroalgae: Indicator of Phylogenetic and Trophic Relationships. Marine Ecology Progress Series. 231, 67-74.
  • GRATTAN, B.J. (2013). Plant Sterols as Anticancer Nutrients: Evidence for Their Role in Breast Cancer. Nutrients. 5, 359-387.
  • GUBELIT, Y.I., MAKHUTOVA, O.N., SUSHCHIK, N.N., KOLMAKOVA, A.A., KALACHOVA, G.S., GLADYSHEV, M.I. (2015). Fatty Acid and Elemental Composition of Littoral “Green Tide” Algae from the Gulf of Finland, the Baltic Sea. Journal of Applied Phycology. 27, 375-386.
  • HOLDT, S.L., KRAAN, S. (2011). Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. Journal of Applied Phycology. 23, 543-597.
  • JEZ, S., SPINELLI, D., FIERRO, A., DIBENEDETTO, A., ARESTA, M., BUSI, E., BASOSI, R. (2017). Comparative Life Cycle Assessment Study on Environmental Impact of Oil Production from Micro-Algae and Terrestrial Oilseed Crops. Bioresource Technology. 239, 266-275.
  • JIANG, Y., CHEN, F. (2000). Effects of Temperature and Temperature Shift on Docosahexaenoic Acid Production by the Marine Microalge Crypthecodinium cohnii. Journal of the American Oil Chemists' Society. 77, 613-617.
  • KAYNAKCI, E. (2012). Sağlıklı Et Ürünlerinin Geliştirilmesi Amacıyla Alternatif Yağ Kaynaklarının Sosis Model Sisteminde Uygulama İmkânlarının Araştırılması. Doktora Tezi, Süleymen Demirel Üniversitesi Fen Bilimleri Enstitüsü
  • KRIS-ETHERTON, P.M., HARRIS, W. S., APPEL, L.J. (2002). Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation. 106, 2747-2757.
  • LEAL, M.C., MUNRO, M.H., BLUNT, J.W., PUGA, J., JESUS, B., CALADO, R., MADEIRA, C. (2013). Biogeography and Biodiscovery Hotspots of Macroalgal Marine Natural Products. Natural Product Reports. 30, 1380-1390.
  • LENIHAN-GEELS, G., BISHOP, K.S., FERGUSON, L.R. (2013). Alternative Sources of Omega-3 Fats: Can We Find a Sustainable Substitute for Fish?. Nutrients. 5, 1301-1315.
  • MAKRI, A., BELLOU, S., BIRKOU, M., PAPATREHAS, K., DOLAPSAKIS, N.P., BOKAS, D., AGGELIS, G. (2011). Lipid Synthesized by Micro‐Algae Grown in Laboratory‐and İndustrial‐Scale Bioreactors. Engineering in Life Sciences. 11, 52-58.
  • MERCER, P., ARMENTA, R.E. (2011). Developments in Oil Extraction from Microalgae. European Journal of Lipid Science and Technology. 113, 539-547.
  • MCCAULEY, J.I., MEYER, B.J., WINBERG, P.C., RANSON, M., SKROPETA, D. (2015). Selecting Australian Marine Macroalgae Based on the Fatty Acid Composition and Anti-Inflammatory Activity. Journal of Applied Phycology. 27, 2111-2121.
  • MWANGI, J.K., LEE, W.J., WHANG, L.M., WU, T.S., CHEN, W.H., CHANG, J.S., CHEN, C.L. (2015). Microalgae Oil: Algae Cultivation and Harvest, Algae Residue Torrefaction and Diesel Engine Emissions Tests. Aerosol and Air Quality Research. 15, 81-98.
  • ÖZÇİMEN, D. (2018). Chlorella protothecoides Mikroalg Yağının Botrytis cinerea ve Aspergillus niger Küflerine Karşı Antifungal Etkisinin İncelenmesi. Journal of Tekirdag Agricultural Faculty. 15, 45-52.
  • PATIL, V., REITAN, K.I., KNUTSEN, G., MORTENSEN, L.M., KÄLLQVİST, T., OLSEN, E., GISLERØD, H.R. (2005). Microalgae as Source of Polyunsaturated Fatty Acids for Aquaculture. Plant Biology. 6, 57-65.
  • PAUL ABISHEK, M., PATEL, J., PREM RAJAN, A. (2014). Algae Oil: A Sustainable Renewable Fuel of Future. Biotechnology Research International. 2014.
  • PEREIRA, C.M., NUNES, C.F., ZAMBOTTI-VILLELA, L., STREIT, N.M., DIAS, D., PINTO, E., COLEPICOLO, P. (2017). Extraction of Sterols in Brown Macroalgae from Antarctica and Their İdentification by Liquid Chromatography Coupled with Tandem Mass Spectrometry. Journal of Applied Phycology. 29, 751-757.
  • PRAGYA, N., PANDEY, K.K., SAHOO, P.K. (2013). A Review on Harvesting, Oil Extraction and Biofuels Production Technologies from Microalgae. Renewable And Sustainable Energy Reviews. 24, 159-171.
  • SCHLAGERMANN, P., GOTTLICHER, G., DILLSCHNEIDER, R., ROSELLO-SASTRE, R., POSTEN, C. (2012). Composition of Algal Oil and Its Potential as Biofuel. Journal of Combustion. 2012.
  • SCHMID, M., GUIHÉNEUF, F., STENGEL, D.B. (2014). Fatty Acid Contents and Profiles of 16 Macroalgae Collected from the Irish Coast at Two Seasons. Journal of Applied Phycology. 26, 451-463.
  • SHAH, S., SHARMA, A., GUPTA, M.N. (2005). Extraction of Oil from Jatropha curcas L. Seed Kernels by Combination of Ultrasonication and Aqueous Enzymatic Oil Extraction. Bioresource Technology. 96, 121-123.
  • SZENTMIHÁLYI, K., VINKLER, P., LAKATOS, B., ILLÉS, V., THEN, M. (2002). Rose Hip (Rosa canina L.) Oil Obtained from Waste Hip Seeds by Different Extraction Methods. Bioresource Technology. 82, 195-201
  • TAKAHATA, K., MONOBE, K.I., TADA, M., WEBER, P.C. (1998). The Benefits and Risks of n-3 Polyunsaturated Fatty Acids. Bioscience, Biotechnology and Biochemistry. 62, 2079-2085.
  • VAN GINNEKEN, V.J., HELSPER, J.P., DE VISSER, W., VAN KEULEN, H., BRANDENBURG, W. A. (2011). Polyunsaturated Fatty Acids in Various Macroalgal Species from North Atlantic and Tropical Seas. Lipids in Health and Disease. 10, 104.
  • VOLKMAN, J.K., JEFFREY, S.W., NICHOLS, P.D., ROGERS, G.I., GARLAND, C.D. (1989). Fatty Acid and Lipid Composition of 10 Species of Microalgae Used in Mariculture. Journal of Experimental Marine Biology and Ecology. 128, 219-240.
  • WELLS, M.L., POTIN, P., CRAIGIE, J.S., RAVEN, J.A., MERCHANT, S.S., HELLIWELL, K.E., BRAWLEY, S.H. (2017). Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. Journal of Applied Phycology. 29, 949-982.
  • WIYARNO, B., YUNUS, R.M., MEL, M. (2011). Extraction of Algae Oil from Nannocloropsis sp.: A Study of Soxhlet and Ultrasonic-Assisted Extractions. Journal of Applied Sciences. 11, 3607-3612.
  • YILMAZ, A. (2019). Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği. Academic Food Journal/Akademik GIDA. 17.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Reviews
Authors

Derya Deniz Şirinyıldız 0000-0002-6491-5512

Aslı Yorulmaz 0000-0003-4446-6585

Publication Date December 25, 2022
Submission Date September 15, 2022
Published in Issue Year 2022 Volume: 1 Issue: 1

Cite

APA Deniz Şirinyıldız, D., & Yorulmaz, A. (2022). Alternatif ve sürdürülebilir bir gıda kaynağı olarak algler. Toros University Journal of Food Nutrition and Gastronomy, 1(1), 101-117.
AMA Deniz Şirinyıldız D, Yorulmaz A. Alternatif ve sürdürülebilir bir gıda kaynağı olarak algler. JFNG. December 2022;1(1):101-117.
Chicago Deniz Şirinyıldız, Derya, and Aslı Yorulmaz. “Alternatif Ve sürdürülebilir Bir gıda kaynağı Olarak Algler”. Toros University Journal of Food Nutrition and Gastronomy 1, no. 1 (December 2022): 101-17.
EndNote Deniz Şirinyıldız D, Yorulmaz A (December 1, 2022) Alternatif ve sürdürülebilir bir gıda kaynağı olarak algler. Toros University Journal of Food Nutrition and Gastronomy 1 1 101–117.
IEEE D. Deniz Şirinyıldız and A. Yorulmaz, “Alternatif ve sürdürülebilir bir gıda kaynağı olarak algler”, JFNG, vol. 1, no. 1, pp. 101–117, 2022.
ISNAD Deniz Şirinyıldız, Derya - Yorulmaz, Aslı. “Alternatif Ve sürdürülebilir Bir gıda kaynağı Olarak Algler”. Toros University Journal of Food Nutrition and Gastronomy 1/1 (December 2022), 101-117.
JAMA Deniz Şirinyıldız D, Yorulmaz A. Alternatif ve sürdürülebilir bir gıda kaynağı olarak algler. JFNG. 2022;1:101–117.
MLA Deniz Şirinyıldız, Derya and Aslı Yorulmaz. “Alternatif Ve sürdürülebilir Bir gıda kaynağı Olarak Algler”. Toros University Journal of Food Nutrition and Gastronomy, vol. 1, no. 1, 2022, pp. 101-17.
Vancouver Deniz Şirinyıldız D, Yorulmaz A. Alternatif ve sürdürülebilir bir gıda kaynağı olarak algler. JFNG. 2022;1(1):101-17.