Review
BibTex RIS Cite

Potential use of food wastes in functional foods: A review of microbial safety studies

Year 2025, Volume: 4 Issue: 1, 83 - 96, 25.06.2025

Abstract

Food is an essential human need, but food waste has become a major problem on a global scale. The effective management, treatment and recovery of food waste is key to addressing this issue. There is now considerable interest in recycling and upgrading food waste. A variety of methods have been developed to effectively control and utilise these wastes, including the extraction of bioactive compounds from the waste for reintroduction into the food chain. Food wastes from many food industries considered a cheap source of functional or bioactive compounds. Sugars, proteins, lipids, fibers, vitamins, minerals, and pigments are the main value-added products derived from fruit and vegetable waste. Animal wastes contain bioactive peptides from meat and dairy products. The aforementioned ingredients can be transformed into nutraceuticals and functional foods by reintroducing them into the food chain as natural food additives. These natural compounds could have the potential to enhance the safety and palatability of foods, while simultaneously addressing any underlying nutritional deficiencies. However, the reintroduction of food wastes into the food chain or food matrices needs a comprehensive evaluation of the optimal recycling and manufacturing practices to ascertain their suitability and safety. Microbiological safety in food is a major concern. According to the literature, many food wastes are valorised, but few studies included research on microbiological safety assessment. This review aims to provide an overview of the potential of food waste for use in the production of functional foods, focusing on the microbiological safety of food waste.

References

  • Referans1 Eurostat. (2021, July). Foodwaste. https://www.consilium.europa.eu/en/policies/food-waste/
  • Referans2 Singh, A., Singhania, R. R., Soam, S., Chen, C. W., Haldar, D., Varjani, S., & Patel, A. K. (2022). Production of bioethanol from food waste: Status and perspectives. Bioresource Technology, 360, 127651. https://doi.org/10.1016/j.biortech.2022.127651
  • Referans3 Wani, N. R., Rather, R. A., Farooq, A., Padder, S. A., Baba, T. R., Sharma, S., & Ara, S. (2024). New insights in food security and environmental sustainability through waste food management. Environmental Science and Pollution Research, 31(12), 17835-17857. https://doi.org/10.1007/s11356-023-26462-y
  • Referans4 Food and Agriculture Organization. (2011, June). Global food losses and food waste – extent, causes and prevention. https://www.fao.org/sustainable-food-value-chains/library/details/en/c/266053/
  • Referans5 Staff Working Documents. (2023, November). Commission staff working document impact assessment report. https://ec.europa.eu/info/law/law-makingprocess/planning-and-proposing-law/better-regulation-why-andhow/better-regulation-guidelines-and-toolbox_en
  • Referans6 Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: Are they safe enough for their valorisation?. Trends in Food Science & Technology, 114, 133-147. https://doi.org/10.1016/j.tifs.2021.05.002 Referans7 Sarker, A., Ahmmed, R., Ahsan, S. M., Rana, J., Ghosh, M. K., & Nandi, R. (2024). A comprehensive review of food waste valorization for the sustainable management of global food waste. Sustainable Food Technology, 2, 48-69.
  • Referans8 Van Walraven, N., & Stark, A. H. (2024). From food waste to functional component: Cashew apple pomace. Critical Reviews in Food Science and Nutrition, 64(20), 7101-7117. https://doi.org/10.1080/10408398.2023.2180616
  • Referans9 Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L., & Napolitano, A. (2020). Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Frontiers in Nutrition, 7, 60. https://doi.org/10.3389/fnut.2020.00060
  • Referans10 Vilas-Boas, A. A., Pintado, M., & Oliveira, A. L. (2021). Natural bioactive compounds from food waste: Toxicity and safety concerns. Foods, 10(7), 1564. https://doi.org/10.3390/foods10071564
  • Referans11 Coman, V., Teleky, B. E., Mitrea, L., Martău, G. A., Szabo, K., Călinoiu, L. F., & Vodnar, D. C. (2020). Bioactive potential of fruit and vegetable wastes. Advances in Food and Nutrition Research, 91, 157-225. https://doi.org/10.1016/bs.afnr.2019.07.001
  • Referans12 Ben-Othman, S., Jõudu, I., & Bhat, R. (2020). Bioactives from agri-food wastes: Present insights and future challenges. Molecules, 25(3), 510. https://doi.org/10.3390/molecules25030510
  • Referans13 Kainat, S., Arshad, M. S., Khalid, W., Zubair Khalid, M., Koraqi, H., Afzal, M. F., ... Al-Farga, A. (2022). Sustainable novel extraction of bioactive compounds from fruits and vegetables waste for functional foods: a review. International Journal of Food Properties, 25(1), 2457-2476. https://doi.org/10.1080/10942912.2022.2144884
  • Referans14 Biswal, S., & Ray, M. (2017). Fermentation of agro–based waste and residues from different sectors: a review. International Journal of Agricultural Science and Research (Ijasr), 7, 425-432.
  • Referans15 Sabater, C., Ruiz, L., Delgado, S., Ruas-Madiedo, P., & Margolles, A. (2020). Valorisation of vegetable food waste and by-products through fermentation processes. Frontiers in Microbiology, 11, 581997. https://doi.org/10.3389/fmicb.2020.581997
  • Referans16 Mala, T., Piayura, S., & Itthivadhanapong, P. (2024). Characterization of dried pineapple (Ananas comosus L.) peel powder and its application as a novel functional food ingredient in cracker product. Future Foods, 9, 100322. https://doi.org/10.1016/j.fufo.2024.100322
  • Referans17 Basílio, L. S. P., Borges, C. V., Minatel, I. O., Vargas, P. F., Tecchio, M. A., Vianello, F., & Lima, G. P. P. (2022). New beverage based on grapes and purple-fleshed sweet potatoes: Use of non-standard tubers. Food Bioscience, 47, 101626. https://doi.org/10.1016/j.fbio.2022.101626
  • Referans18 Abdo, E., El-Sohaimy, S., Shaltout, O., Abdalla, A., & Zeitoun, A. (2020). Nutritional evaluation of beetroots (Beta vulgaris L.) and its potential application in a functional beverage. Plants, 9(12), 1752. https://doi.org/10.3390/plants9121752
  • Referans19 Aruna, T.E. (2019). Production of value-added product from pineapple peels using solid state fermentation. Innovative Food Science & Emerging Technologies, 57, 102193. https://doi.org/10.1016/j.ifset.2019.102193
  • Referans20 Gâtlan, A. M., Gutt, G., & Naghiu, A. (2020). Capitalization of sea buckthorn waste by fermentation: Optimization of industrial process of obtaining a novel refreshing drink. Journal of Food Processing and Preservation, 44(8), e14565.
  • Referans21 Tomita, H., Okazaki, F., & Tamaru, Y. (2019). Direct IBE fermentation from mandarin orange wastes by combination of Clostridium cellulovorans and Clostridium beijerinckii. AMB Express, 9, 1-7. https://doi.org/10.1186/s13568-018-0728-7
  • Referans22 FAO (2021, July). Cereal supply and demand brief ; food and agriculture organization of the united nations: rome, Italy, 2021. https://www.fao.org/worldfoodsituation/csdb/en
  • Referans23 Pérez-Marroquín, X. A., Estrada-Fernández, A. G., García-Ceja, A., Aguirre-Álvarez, G., & León-López, A. (2023). Food waste as an ingredient in functional beverage processing: sources, functionality, market and regulation. Foods, 12(8), 1583. https://doi.org/10.3390/foods12081583
  • Referans24 Mano, M. C. R., Paulino, B. N., & Pastore, G. M. (2019). Whey permeate as the raw material in galacto-oligosaccharide synthesis using commercial enzymes. Food Research International, 124, 78-85. https://doi.org/10.1016/j.foodres.2018.09.019
  • Referans25 Luz, C., Rodriguez, L., Romano, R., Mañes, J., & Meca, G. (2020). A natural strategy to improve the shelf life of the loaf bread against toxigenic fungi: The employment of fermented whey powder. International Journal of Dairy Technology, 73(1), 88-97. https://doi.org/10.1111/1471-0307.12660
  • Referans26 Elkot, W. F., Elmahdy, A., Talaat, H., Alghamdia, O. A., Alhag, S. K., Al-Shahari, E. A., ... Ismail, H. A. (2024). Development and characterization of a novel flavored functional fermented whey-based sports beverage fortified with Spirulina platensis. International Journal of Biological Macromolecules, 258, 128999. https://doi.org/10.1016/j.ijbiomac.2023.128999
  • Referans27 Iosca, G., Turetta, M., De Vero, L., Bang-Berthelsen, C. H., Gullo, M., & Pulvirenti, A. (2023). Valorization of wheat bread waste and cheese whey through cultivation of lactic acid bacteria for bio-preservation of bakery products. LWT, 176, 114524. https://doi.org/10.1016/j.lwt.2023.114524
  • Referans28 Jitpakdee, J., Kantachote, D., Kanzaki, H., & Nitoda, T. (2022). Potential of lactic acid bacteria to produce functional fermented whey beverage with putative health promoting attributes. LWT, 160, 113269. https://doi.org/10.1016/j.lwt.2022.113269
  • Referans29 Borrajo, P., Pateiro, M., Barba, F. J., Mora, L., Franco, D., Toldrá, F., & Lorenzo, J. M. (2019). Antioxidant and antimicrobial activity of peptides extracted from meat by-products: a review. Food Analytical Methods, 12, 2401-2415. https://doi.org/10.1007/s12161-019-01595-4
  • Referans30 Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of Food Science and Technology, 49, 278-293. https://doi.org/10.1007/s13197-011-0290-7
  • Referans31 Glimåker, A., Getya, A., Kravchenko, O., & Zamaratskaia, G. (2023). Waste and by-products from the meat industry as a source of bioactive compounds. Herald of Science of Seofullın Kazakh Agro Technıcal Research Unıversıty: Veterinary Sciences, 3(003), 50-60. https://doi.org/10.51452/kazatuvc.2023.3(003).1507
  • Referans32 Mehmood, L., Mujahid, S. A., Asghar, S., ur Rahman, H. U., & Khalid, N. (2024). Formulation and quality evaluation of chicken nuggets supplemented with beef and chicken livers. Food Science of Animal Resources, 44(3), 620.
  • Referans33 Akimova, D., Suychinov, A., Kakimov, A., Kabdylzhar, B., Zharykbasov, Y., & Yessimbekov, Z. (2023). Effect of chicken by-products on the physicochemical properties of forcemeat formulations. Future Foods, 7, 100238. https://doi.org/10.1016/j.fufo.2023.100238
  • Referans34 Arioui, F., Saada, D. A., & Cheriguene, A. (2018). Research article functional properties of bovine bone gelatin and ımpact on physicochemical, microbiological and organoleptic quality of set yogurt. Biotechnology, 17(1), 1-11.
  • Referans35 Madhu, M., Kumar, D., Sirohi, R., Tarafdar, A., Dhewa, T., Aluko, R. E., ... & Awasthi, M. K. (2022). Bioactive peptides from meat: Current status on production, biological activity, safety, and regulatory framework. Chemosphere, 307, 135650. https://doi.org/10.1016/j.chemosphere.2022.135650
  • Referans36 Mateus, A. R. S., Barros, S. C., Cortegoso, S. M., Sendón, R., Barbosa-Pereira, L., Khwaldia, K., ... Sanches-Silva, A. (2024). Potential of fruit seeds: Exploring bioactives and ensuring food safety for sustainable management of food waste. Food Chemistry: X, 101718. https://doi.org/10.1016/j.fochx.2024.101718
  • Referans37 Beltrán-Medina, E. A., Guatemala-Morales, G. M., Padilla-Camberos, E., Corona-González, R. I., Mondragón-Cortez, P. M., & Arriola-Guevara, E. (2020). Evaluation of the use of a coffee industry by-product in a cereal-based extruded food product. Foods, 9(8), 1008. https://doi.org/10.3390/foods9081008
  • Referans38 Gomes, S., Vieira, B., Barbosa, C., & Pinheiro, R. (2022). Evaluation of mature banana peel flour on physical, chemical, and texture properties of a gluten‐free Rissol. Journal of Food Processing and Preservation, 46(8), e14441. https://doi.org/10.1111/jfpp.14441
  • Referans39 Tremblay, A., Corcuff, R., Goulet, C., Godefroy, S. B., Doyen, A., & Beaulieu, L. (2020). Valorization of snow crab (Chionoecetes opilio) cooking effluents for food applications. Journal of the Science of Food and Agriculture, 100(1), 384-393. https://doi.org/10.1002/jsfa.10066
  • Referans40 Han, L., Zhang, J., & Cao, X. (2021). Effects of orange peel powder on rheological properties of wheat dough and bread aging. Food Science & Nutrition, 9(2), 1061-1069. https://doi.org/10.1002/fsn3.2080
  • Referans41 Ramya, H. N., Anitha, S., & Ashwini, A. (2020). Nutritional and sensory evaluation of jackfruit rind powder incorporated with cookies. International Journal of Current Microbiology and Applied Sciences, 9, 3305-3312.
  • Referans42 Usmani, Z., Sharma, M., Gaffey, J., Sharma, M., Dewhurst, R. J., Moreau, B., ... & Gupta, V. K. (2022). Valorization of dairy waste and by-products through microbial bioprocesses. Bioresource Technology, 346, 126444. https://doi.org/10.1016/j.biortech.2021.126444
  • Referans43 de Almeida Marques, G., de São José, J. F. B., Silva, D. A., & da Silva, E. M. M. (2016). Whey protein as a substitute for wheat in the development of no added sugar cookies. LWT-Food Science and Technology, 67, 118-126. https://doi.org/10.1016/j.lwt.2015.11.044
  • Referans44 Ungureanu, N., Valentin, V., Biris, S. S., Gheorghiță, N. E., Ionescu, M., Dinca, M., & Milea, O. E. (2023). Management of waste and by-products from meat industry. Acta Technica Corviniensis – Bulletin of Engineering, 49-58.
  • Referans45 Food and Agriculture Organization. (2022, September). Meat market review: Emerging trends and outlook. https://www.fao.org/3/cc3164en/cc3164en.pdf.
  • Referans46 Economic Co-operation and Development (OECD) and the Food and Agriculture Organization of the United Nations (FAO). (2021, June). OECD–FAO Agricultural Outlook 2021–2030. https://www.fao.org/3/cb5332en/Meat.pdf
  • Referans47 Zahid, H. F., Ranadheera, C. S., Fang, Z., & Ajlouni, S. (2021). Utilization of mango, apple and banana fruit peels as prebiotics and functional ingredients. Agriculture, 11(7), 584.
  • Referans48 Henríquez, C., Sarkar, D., Molina, J., Sepúlveda, S., Córdova, A., Saavedra, J., & Shetty, K. (2020). Improving antioxidant and anti‐hyperglycemic activity in cereal and apple‐based food formulations using bioactive ingredients from apple peel. Journal of Food Processing and Preservation, 44(8), e14609.
  • Referans49 Okcu, Z., & Yangılar, F. (2024). Quality Parameters and Antioxidant Activity, Phenolic Compounds, Sensory Properties of Functional Yogurt with Melon (Cucumis melo L.) Peel Powder. Turkish Journal of Agriculture-Food Science and Technology, 12(4), 586-595.
  • Referans50 Kęska, P., Wojciak, K., Stadnik, J., Kluz, M. I., Kačániová, M., Čmiková, N., ... & Mazurek, K. (2024). Influence of apple pomace on the oxidation status, fatty acid content, colour stability and microbiological profile of baked meat products. International Journal of Food Science & Technology, 59(3), 1591-1604.
  • Referans51 Araújo, Í. B., Lima, D. A. S., Pereira, S. F., Paseto, R. P., & Madruga, M. S. (2021). Effect of storage time on the quality of chicken sausages produced with fat replacement by collagen gel extracted from chicken feet. Poultry Science, 100(2), 1262-1272.
  • Referans52 Helmi, L., Al Khatib, A., Rajha, H. N., Debs, E., Jammoul, A., Louka, N., & El Darra, N. (2024). Valorization of Potato Peels (Solanum tuberosum) Using Infrared-Assisted Extraction: A Novel Sprouting Suppressant and Antibacterial Agent. Foods, 13(21), 3445.
  • Referans53 Helal, M. M., El-Adawy, T. A., El-Beltagy, A. A., El-Bedawey, A. A., & Youssef, S. M. (2024). Potato Peels Waste Extract as Natural Antioxidant and Antimicrobial in Lemon Carbonated Soft Drink. Food ScienTech Journal, 6(1), 27-40.
  • Referans54 Moncalvo, A., Marinoni, L., Dordoni, R., Duserm Garrido, G., Lavelli, V., & Spigno, G. (2016). Waste grape skins: Evaluation of safety aspects for the production of functional powders and extracts for the food sector. Food Additives & Contaminants: Part A, 33(7), 1116-1126.
  • Referans55 Bouaziz, M. A., Abbes, F., Mokni, A., Blecker, C., Attia, H., & Besbes, S. (2017). The addition effect of Tunisian date seed fibers on the quality of chocolate spreads. Journal of texture studies, 48(2), 143-150.
  • Referans56 Lin, W. F., Guo, H. Q., Zhu, L. J., Yang, K., Li, H. Z., & Cui, L. (2022). Temporal variation of antibiotic resistome and pathogens in food waste during short-term storage. Journal of Hazardous Materials, 436, 129261.
  • Referans57 Chen, Z., & Jiang, X. (2017). Microbiological safety of animal wastes processed by physical heat treatment: an alternative to eliminate human pathogens in biological soil amendments as recommended by the Food Safety Modernization Act. Journal of Food Protection, 80(3), 392-405.
  • Referans58 Alegbeleye, O. O., Singleton, I., & Sant’Ana, A. S. (2018). Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiology, 73, 177-208.
  • Referans59 Ma, Y., Khan, M. Z., Xiao, J., Alugongo, G. M., Chen, X., Li, S., ... & Cao, Z. (2022). An overview of waste milk feeding effect on growth performance, metabolism, antioxidant status and immunity of dairy calves. Frontiers in veterinary science, 9, 898295.

Gıda atıklarının fonksiyonel gıdalarda potansiyel kullanımı: mikrobiyal güvenlik çalışmalarının bir derlemesi

Year 2025, Volume: 4 Issue: 1, 83 - 96, 25.06.2025

Abstract

References

  • Referans1 Eurostat. (2021, July). Foodwaste. https://www.consilium.europa.eu/en/policies/food-waste/
  • Referans2 Singh, A., Singhania, R. R., Soam, S., Chen, C. W., Haldar, D., Varjani, S., & Patel, A. K. (2022). Production of bioethanol from food waste: Status and perspectives. Bioresource Technology, 360, 127651. https://doi.org/10.1016/j.biortech.2022.127651
  • Referans3 Wani, N. R., Rather, R. A., Farooq, A., Padder, S. A., Baba, T. R., Sharma, S., & Ara, S. (2024). New insights in food security and environmental sustainability through waste food management. Environmental Science and Pollution Research, 31(12), 17835-17857. https://doi.org/10.1007/s11356-023-26462-y
  • Referans4 Food and Agriculture Organization. (2011, June). Global food losses and food waste – extent, causes and prevention. https://www.fao.org/sustainable-food-value-chains/library/details/en/c/266053/
  • Referans5 Staff Working Documents. (2023, November). Commission staff working document impact assessment report. https://ec.europa.eu/info/law/law-makingprocess/planning-and-proposing-law/better-regulation-why-andhow/better-regulation-guidelines-and-toolbox_en
  • Referans6 Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: Are they safe enough for their valorisation?. Trends in Food Science & Technology, 114, 133-147. https://doi.org/10.1016/j.tifs.2021.05.002 Referans7 Sarker, A., Ahmmed, R., Ahsan, S. M., Rana, J., Ghosh, M. K., & Nandi, R. (2024). A comprehensive review of food waste valorization for the sustainable management of global food waste. Sustainable Food Technology, 2, 48-69.
  • Referans8 Van Walraven, N., & Stark, A. H. (2024). From food waste to functional component: Cashew apple pomace. Critical Reviews in Food Science and Nutrition, 64(20), 7101-7117. https://doi.org/10.1080/10408398.2023.2180616
  • Referans9 Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L., & Napolitano, A. (2020). Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Frontiers in Nutrition, 7, 60. https://doi.org/10.3389/fnut.2020.00060
  • Referans10 Vilas-Boas, A. A., Pintado, M., & Oliveira, A. L. (2021). Natural bioactive compounds from food waste: Toxicity and safety concerns. Foods, 10(7), 1564. https://doi.org/10.3390/foods10071564
  • Referans11 Coman, V., Teleky, B. E., Mitrea, L., Martău, G. A., Szabo, K., Călinoiu, L. F., & Vodnar, D. C. (2020). Bioactive potential of fruit and vegetable wastes. Advances in Food and Nutrition Research, 91, 157-225. https://doi.org/10.1016/bs.afnr.2019.07.001
  • Referans12 Ben-Othman, S., Jõudu, I., & Bhat, R. (2020). Bioactives from agri-food wastes: Present insights and future challenges. Molecules, 25(3), 510. https://doi.org/10.3390/molecules25030510
  • Referans13 Kainat, S., Arshad, M. S., Khalid, W., Zubair Khalid, M., Koraqi, H., Afzal, M. F., ... Al-Farga, A. (2022). Sustainable novel extraction of bioactive compounds from fruits and vegetables waste for functional foods: a review. International Journal of Food Properties, 25(1), 2457-2476. https://doi.org/10.1080/10942912.2022.2144884
  • Referans14 Biswal, S., & Ray, M. (2017). Fermentation of agro–based waste and residues from different sectors: a review. International Journal of Agricultural Science and Research (Ijasr), 7, 425-432.
  • Referans15 Sabater, C., Ruiz, L., Delgado, S., Ruas-Madiedo, P., & Margolles, A. (2020). Valorisation of vegetable food waste and by-products through fermentation processes. Frontiers in Microbiology, 11, 581997. https://doi.org/10.3389/fmicb.2020.581997
  • Referans16 Mala, T., Piayura, S., & Itthivadhanapong, P. (2024). Characterization of dried pineapple (Ananas comosus L.) peel powder and its application as a novel functional food ingredient in cracker product. Future Foods, 9, 100322. https://doi.org/10.1016/j.fufo.2024.100322
  • Referans17 Basílio, L. S. P., Borges, C. V., Minatel, I. O., Vargas, P. F., Tecchio, M. A., Vianello, F., & Lima, G. P. P. (2022). New beverage based on grapes and purple-fleshed sweet potatoes: Use of non-standard tubers. Food Bioscience, 47, 101626. https://doi.org/10.1016/j.fbio.2022.101626
  • Referans18 Abdo, E., El-Sohaimy, S., Shaltout, O., Abdalla, A., & Zeitoun, A. (2020). Nutritional evaluation of beetroots (Beta vulgaris L.) and its potential application in a functional beverage. Plants, 9(12), 1752. https://doi.org/10.3390/plants9121752
  • Referans19 Aruna, T.E. (2019). Production of value-added product from pineapple peels using solid state fermentation. Innovative Food Science & Emerging Technologies, 57, 102193. https://doi.org/10.1016/j.ifset.2019.102193
  • Referans20 Gâtlan, A. M., Gutt, G., & Naghiu, A. (2020). Capitalization of sea buckthorn waste by fermentation: Optimization of industrial process of obtaining a novel refreshing drink. Journal of Food Processing and Preservation, 44(8), e14565.
  • Referans21 Tomita, H., Okazaki, F., & Tamaru, Y. (2019). Direct IBE fermentation from mandarin orange wastes by combination of Clostridium cellulovorans and Clostridium beijerinckii. AMB Express, 9, 1-7. https://doi.org/10.1186/s13568-018-0728-7
  • Referans22 FAO (2021, July). Cereal supply and demand brief ; food and agriculture organization of the united nations: rome, Italy, 2021. https://www.fao.org/worldfoodsituation/csdb/en
  • Referans23 Pérez-Marroquín, X. A., Estrada-Fernández, A. G., García-Ceja, A., Aguirre-Álvarez, G., & León-López, A. (2023). Food waste as an ingredient in functional beverage processing: sources, functionality, market and regulation. Foods, 12(8), 1583. https://doi.org/10.3390/foods12081583
  • Referans24 Mano, M. C. R., Paulino, B. N., & Pastore, G. M. (2019). Whey permeate as the raw material in galacto-oligosaccharide synthesis using commercial enzymes. Food Research International, 124, 78-85. https://doi.org/10.1016/j.foodres.2018.09.019
  • Referans25 Luz, C., Rodriguez, L., Romano, R., Mañes, J., & Meca, G. (2020). A natural strategy to improve the shelf life of the loaf bread against toxigenic fungi: The employment of fermented whey powder. International Journal of Dairy Technology, 73(1), 88-97. https://doi.org/10.1111/1471-0307.12660
  • Referans26 Elkot, W. F., Elmahdy, A., Talaat, H., Alghamdia, O. A., Alhag, S. K., Al-Shahari, E. A., ... Ismail, H. A. (2024). Development and characterization of a novel flavored functional fermented whey-based sports beverage fortified with Spirulina platensis. International Journal of Biological Macromolecules, 258, 128999. https://doi.org/10.1016/j.ijbiomac.2023.128999
  • Referans27 Iosca, G., Turetta, M., De Vero, L., Bang-Berthelsen, C. H., Gullo, M., & Pulvirenti, A. (2023). Valorization of wheat bread waste and cheese whey through cultivation of lactic acid bacteria for bio-preservation of bakery products. LWT, 176, 114524. https://doi.org/10.1016/j.lwt.2023.114524
  • Referans28 Jitpakdee, J., Kantachote, D., Kanzaki, H., & Nitoda, T. (2022). Potential of lactic acid bacteria to produce functional fermented whey beverage with putative health promoting attributes. LWT, 160, 113269. https://doi.org/10.1016/j.lwt.2022.113269
  • Referans29 Borrajo, P., Pateiro, M., Barba, F. J., Mora, L., Franco, D., Toldrá, F., & Lorenzo, J. M. (2019). Antioxidant and antimicrobial activity of peptides extracted from meat by-products: a review. Food Analytical Methods, 12, 2401-2415. https://doi.org/10.1007/s12161-019-01595-4
  • Referans30 Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of Food Science and Technology, 49, 278-293. https://doi.org/10.1007/s13197-011-0290-7
  • Referans31 Glimåker, A., Getya, A., Kravchenko, O., & Zamaratskaia, G. (2023). Waste and by-products from the meat industry as a source of bioactive compounds. Herald of Science of Seofullın Kazakh Agro Technıcal Research Unıversıty: Veterinary Sciences, 3(003), 50-60. https://doi.org/10.51452/kazatuvc.2023.3(003).1507
  • Referans32 Mehmood, L., Mujahid, S. A., Asghar, S., ur Rahman, H. U., & Khalid, N. (2024). Formulation and quality evaluation of chicken nuggets supplemented with beef and chicken livers. Food Science of Animal Resources, 44(3), 620.
  • Referans33 Akimova, D., Suychinov, A., Kakimov, A., Kabdylzhar, B., Zharykbasov, Y., & Yessimbekov, Z. (2023). Effect of chicken by-products on the physicochemical properties of forcemeat formulations. Future Foods, 7, 100238. https://doi.org/10.1016/j.fufo.2023.100238
  • Referans34 Arioui, F., Saada, D. A., & Cheriguene, A. (2018). Research article functional properties of bovine bone gelatin and ımpact on physicochemical, microbiological and organoleptic quality of set yogurt. Biotechnology, 17(1), 1-11.
  • Referans35 Madhu, M., Kumar, D., Sirohi, R., Tarafdar, A., Dhewa, T., Aluko, R. E., ... & Awasthi, M. K. (2022). Bioactive peptides from meat: Current status on production, biological activity, safety, and regulatory framework. Chemosphere, 307, 135650. https://doi.org/10.1016/j.chemosphere.2022.135650
  • Referans36 Mateus, A. R. S., Barros, S. C., Cortegoso, S. M., Sendón, R., Barbosa-Pereira, L., Khwaldia, K., ... Sanches-Silva, A. (2024). Potential of fruit seeds: Exploring bioactives and ensuring food safety for sustainable management of food waste. Food Chemistry: X, 101718. https://doi.org/10.1016/j.fochx.2024.101718
  • Referans37 Beltrán-Medina, E. A., Guatemala-Morales, G. M., Padilla-Camberos, E., Corona-González, R. I., Mondragón-Cortez, P. M., & Arriola-Guevara, E. (2020). Evaluation of the use of a coffee industry by-product in a cereal-based extruded food product. Foods, 9(8), 1008. https://doi.org/10.3390/foods9081008
  • Referans38 Gomes, S., Vieira, B., Barbosa, C., & Pinheiro, R. (2022). Evaluation of mature banana peel flour on physical, chemical, and texture properties of a gluten‐free Rissol. Journal of Food Processing and Preservation, 46(8), e14441. https://doi.org/10.1111/jfpp.14441
  • Referans39 Tremblay, A., Corcuff, R., Goulet, C., Godefroy, S. B., Doyen, A., & Beaulieu, L. (2020). Valorization of snow crab (Chionoecetes opilio) cooking effluents for food applications. Journal of the Science of Food and Agriculture, 100(1), 384-393. https://doi.org/10.1002/jsfa.10066
  • Referans40 Han, L., Zhang, J., & Cao, X. (2021). Effects of orange peel powder on rheological properties of wheat dough and bread aging. Food Science & Nutrition, 9(2), 1061-1069. https://doi.org/10.1002/fsn3.2080
  • Referans41 Ramya, H. N., Anitha, S., & Ashwini, A. (2020). Nutritional and sensory evaluation of jackfruit rind powder incorporated with cookies. International Journal of Current Microbiology and Applied Sciences, 9, 3305-3312.
  • Referans42 Usmani, Z., Sharma, M., Gaffey, J., Sharma, M., Dewhurst, R. J., Moreau, B., ... & Gupta, V. K. (2022). Valorization of dairy waste and by-products through microbial bioprocesses. Bioresource Technology, 346, 126444. https://doi.org/10.1016/j.biortech.2021.126444
  • Referans43 de Almeida Marques, G., de São José, J. F. B., Silva, D. A., & da Silva, E. M. M. (2016). Whey protein as a substitute for wheat in the development of no added sugar cookies. LWT-Food Science and Technology, 67, 118-126. https://doi.org/10.1016/j.lwt.2015.11.044
  • Referans44 Ungureanu, N., Valentin, V., Biris, S. S., Gheorghiță, N. E., Ionescu, M., Dinca, M., & Milea, O. E. (2023). Management of waste and by-products from meat industry. Acta Technica Corviniensis – Bulletin of Engineering, 49-58.
  • Referans45 Food and Agriculture Organization. (2022, September). Meat market review: Emerging trends and outlook. https://www.fao.org/3/cc3164en/cc3164en.pdf.
  • Referans46 Economic Co-operation and Development (OECD) and the Food and Agriculture Organization of the United Nations (FAO). (2021, June). OECD–FAO Agricultural Outlook 2021–2030. https://www.fao.org/3/cb5332en/Meat.pdf
  • Referans47 Zahid, H. F., Ranadheera, C. S., Fang, Z., & Ajlouni, S. (2021). Utilization of mango, apple and banana fruit peels as prebiotics and functional ingredients. Agriculture, 11(7), 584.
  • Referans48 Henríquez, C., Sarkar, D., Molina, J., Sepúlveda, S., Córdova, A., Saavedra, J., & Shetty, K. (2020). Improving antioxidant and anti‐hyperglycemic activity in cereal and apple‐based food formulations using bioactive ingredients from apple peel. Journal of Food Processing and Preservation, 44(8), e14609.
  • Referans49 Okcu, Z., & Yangılar, F. (2024). Quality Parameters and Antioxidant Activity, Phenolic Compounds, Sensory Properties of Functional Yogurt with Melon (Cucumis melo L.) Peel Powder. Turkish Journal of Agriculture-Food Science and Technology, 12(4), 586-595.
  • Referans50 Kęska, P., Wojciak, K., Stadnik, J., Kluz, M. I., Kačániová, M., Čmiková, N., ... & Mazurek, K. (2024). Influence of apple pomace on the oxidation status, fatty acid content, colour stability and microbiological profile of baked meat products. International Journal of Food Science & Technology, 59(3), 1591-1604.
  • Referans51 Araújo, Í. B., Lima, D. A. S., Pereira, S. F., Paseto, R. P., & Madruga, M. S. (2021). Effect of storage time on the quality of chicken sausages produced with fat replacement by collagen gel extracted from chicken feet. Poultry Science, 100(2), 1262-1272.
  • Referans52 Helmi, L., Al Khatib, A., Rajha, H. N., Debs, E., Jammoul, A., Louka, N., & El Darra, N. (2024). Valorization of Potato Peels (Solanum tuberosum) Using Infrared-Assisted Extraction: A Novel Sprouting Suppressant and Antibacterial Agent. Foods, 13(21), 3445.
  • Referans53 Helal, M. M., El-Adawy, T. A., El-Beltagy, A. A., El-Bedawey, A. A., & Youssef, S. M. (2024). Potato Peels Waste Extract as Natural Antioxidant and Antimicrobial in Lemon Carbonated Soft Drink. Food ScienTech Journal, 6(1), 27-40.
  • Referans54 Moncalvo, A., Marinoni, L., Dordoni, R., Duserm Garrido, G., Lavelli, V., & Spigno, G. (2016). Waste grape skins: Evaluation of safety aspects for the production of functional powders and extracts for the food sector. Food Additives & Contaminants: Part A, 33(7), 1116-1126.
  • Referans55 Bouaziz, M. A., Abbes, F., Mokni, A., Blecker, C., Attia, H., & Besbes, S. (2017). The addition effect of Tunisian date seed fibers on the quality of chocolate spreads. Journal of texture studies, 48(2), 143-150.
  • Referans56 Lin, W. F., Guo, H. Q., Zhu, L. J., Yang, K., Li, H. Z., & Cui, L. (2022). Temporal variation of antibiotic resistome and pathogens in food waste during short-term storage. Journal of Hazardous Materials, 436, 129261.
  • Referans57 Chen, Z., & Jiang, X. (2017). Microbiological safety of animal wastes processed by physical heat treatment: an alternative to eliminate human pathogens in biological soil amendments as recommended by the Food Safety Modernization Act. Journal of Food Protection, 80(3), 392-405.
  • Referans58 Alegbeleye, O. O., Singleton, I., & Sant’Ana, A. S. (2018). Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiology, 73, 177-208.
  • Referans59 Ma, Y., Khan, M. Z., Xiao, J., Alugongo, G. M., Chen, X., Li, S., ... & Cao, Z. (2022). An overview of waste milk feeding effect on growth performance, metabolism, antioxidant status and immunity of dairy calves. Frontiers in veterinary science, 9, 898295.
There are 58 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Reviews
Authors

Ayşegül Kırmızıgül Peker 0000-0003-4723-7374

İlkin Şengün 0000-0001-6940-2129

Publication Date June 25, 2025
Submission Date September 18, 2024
Acceptance Date February 12, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Kırmızıgül Peker, A., & Şengün, İ. (2025). Potential use of food wastes in functional foods: A review of microbial safety studies. Toros University Journal of Food, Nutrition and Gastronomy, 4(1), 83-96.
AMA Kırmızıgül Peker A, Şengün İ. Potential use of food wastes in functional foods: A review of microbial safety studies. JFNG. June 2025;4(1):83-96.
Chicago Kırmızıgül Peker, Ayşegül, and İlkin Şengün. “Potential Use of Food Wastes in Functional Foods: A Review of Microbial Safety Studies”. Toros University Journal of Food, Nutrition and Gastronomy 4, no. 1 (June 2025): 83-96.
EndNote Kırmızıgül Peker A, Şengün İ (June 1, 2025) Potential use of food wastes in functional foods: A review of microbial safety studies. Toros University Journal of Food, Nutrition and Gastronomy 4 1 83–96.
IEEE A. Kırmızıgül Peker and İ. Şengün, “Potential use of food wastes in functional foods: A review of microbial safety studies”, JFNG, vol. 4, no. 1, pp. 83–96, 2025.
ISNAD Kırmızıgül Peker, Ayşegül - Şengün, İlkin. “Potential Use of Food Wastes in Functional Foods: A Review of Microbial Safety Studies”. Toros University Journal of Food, Nutrition and Gastronomy 4/1 (June 2025), 83-96.
JAMA Kırmızıgül Peker A, Şengün İ. Potential use of food wastes in functional foods: A review of microbial safety studies. JFNG. 2025;4:83–96.
MLA Kırmızıgül Peker, Ayşegül and İlkin Şengün. “Potential Use of Food Wastes in Functional Foods: A Review of Microbial Safety Studies”. Toros University Journal of Food, Nutrition and Gastronomy, vol. 4, no. 1, 2025, pp. 83-96.
Vancouver Kırmızıgül Peker A, Şengün İ. Potential use of food wastes in functional foods: A review of microbial safety studies. JFNG. 2025;4(1):83-96.