Research Article
BibTex RIS Cite

Machine learning in audio mastering: a comparative study

Year 2025, Volume: 6 Issue: 1, 47 - 65
https://doi.org/10.5281/zenodo.15074948

Abstract

Machine learning approaches now utilized in audio mastering are transforming traditional workflows. This comparative study examines the effectiveness of supervised and unsupervised methods in the mastering process. Platforms such as LANDR employ supervised models that emulate expert engineers, offering cost-effective options for independent artists, while unsupervised techniques aid spectral balance and dynamic range optimization. The methodology relies on objective metrics—including Distortion Meter, Dynamic Range, Loudness Penalty, Intelligibility, and High Frequency Distortion—along with subjective listening assessments. Statistical analyses show that human engineers surpass AI systems in preserving dynamic range, minimizing distortion, and maintaining sonic clarity, particularly for complex genres like classical and jazz. Empirical research reveals AI mastering causes greater distortion, narrower dynamic range, and higher loudness penalties. In contrast, engineers deliver superior audio quality through broader dynamic range, lower distortion, and enhanced intelligibility. While AI quickly provides reasonable results for simpler styles like Pop and Electronic, human expertise offers advantages for complex compositions where aesthetic judgment is key. These findings indicate that despite technological progress, human know-how remains critically vital in creative decision-making. The study also points to potential for human-machine collaboration in mastering, with AI initially optimizing parameters and engineers making refined aesthetic adjustments to enhance quality. This hybrid approach could unite technological efficiency with artistic excellence. Future work should focus on improving AI's ability to emulate human aesthetic decisions, developing genre-specific mastering, and incorporating techniques like generative adversarial networks to mastering. These advancements may pave the way for hybrid systems fusing human creativity and machine efficiency.

Ethical Statement

Approval for this research was obtained with the decision numbered 2024/380 from the Afyon Kocatepe University Social and Human Sciences Scientific Research and Publication Ethics Committee.

Supporting Institution

No funding and supports

Thanks

I would like to express my gratitude first to my family, then to our editor and the reviewers who contributed to this study, and to my business partner Özlem Folb for her assistance with the English translation.

References

  • Abel, J., Kaniewska, M., Guillaume, C., Tirry, W., Pulakka, H., Myllyla, V., Sjoberg, J., Alku, P., Katsir, I., Malah, D., Cohen, I., Tugtekin Turan, M. A., Erzin, E., Schlien, T., Vary, P., Nour-Eldin, A., Kabal, P., & Fingscheidt, T. (2016). A subjective listening test of six different artificial bandwidth extension approaches in English, Chinese, German, and Korean. IEEE International Conference on Acoustics, Speech and Signal Processing. https://doi.org/10.1109/icassp.2016.7472812
  • Alexander, L. (2020). An introduction to audio content analysis: Applications in signal processing and music informatics.
  • Ballou, G. (2002). Handbook for sound engineers (3rd ed.). Focal Press.
  • Barbosa, Á. (2006). Computer-supported cooperative work for music applications. Doctoral dissertation. http://www.tesisenxarxa.net
  • Benade, A. H., & Johns, R. H. (1977). Fundamentals of musical acoustics. American Journal of Physics, 45(1), 111–111. https://doi.org/10.1119/1.10883
  • Birtchnell, T. (2018). Listening without ears: Artificial intelligence in audio mastering. Big Data & Society, 5(2). https://doi.org/10.1177/2053951718808553
  • Cera, C. D., Regli, W. C., Braude, I., Shapirstein, Y., & Foster, C. V. (2002). A collaborative 3D environment for authoring design semantics. IEEE Computer Graphics and Applications, 22(3), 43–55. https://doi.org/10.1109/mcg.2002.999787
  • Cheng, K., & Olechowski, A. (2021). Some (Team) assembly required: An analysis of collaborative computer-aided design assembly. https://doi.org/10.1115/detc2021-68507
  • Cronhjort, A. (1992). A computer-controlled bowing machine (MUMS). Royal Institute of Technology Speech, Music and Hearing Quarterly Progress and Status Report, 33(2-3), 61-66. https://doi.org/10.1051/aacus/2024035
  • Gómez, A. M., Schwerin, B., & Paliwal, K. (2012). Improving objective intelligibility prediction by combining correlation and coherence-based methods with a measure based on the negative distortion ratio. Speech Communication, 54(3), 503–515. https://doi.org/10.1016/j.specom.2011.11.001
  • Hormozi, H., Hormozi, E., & Nohooji, H. R. (2012). The classification of the applicable machine learning methods in robot manipulators. International Journal of Machine Learning and Computing, 2(5), 560-563. https://doi.org/10.7763/IJMLC.2012.V2.189
  • Ivanović, M., & Radovanović, M. (2015). Modern machine learning techniques and their applications. In Electronics, Communications and Networks IV (pp. 833-846). CRC Press. https://doi.org/10.1201/b18592-153
  • Kates, J. M., & Arehart, K. H. (2004). A metric for evaluating speech intelligibility and quality in hearing aids. The Journal of the Acoustical Society of America, 116(4_Supplement), 2536–2537. https://doi.org/10.1121/1.4785122
  • Katz, B., & Katz, R. A. (2015). Mastering audio: The art and the science (3rd ed.). Focal Press.
  • Khanum, M., Mahboob, T., Imtiaz, W., Abdul Ghafoor, H., & Sehar, R. (2015). A survey on unsupervised machine learning algorithms for automation, classification and maintenance. International Journal of Computer Applications, 119(13), 34–39. https://doi.org/10.5120/21131-4058
  • Kirby, D. G., Feige, F., & Wustenhagen, U. (1994). ISO/MPEG subjective tests on multichannel audio coding systems: Practical realisation and test results. In IBC 1994 International Broadcasting Convention (pp. 132-139). IET. https://doi.org/10.1049/cp:19940741
  • Kotsiantis, S. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31(3), 249-268.
  • Kour, H., & Gondhi, N. (2020). Machine learning techniques: A survey. In Lecture Notes on Data Engineering and Communications Technologies (pp. 266–275). Springer International Publishing. https://doi.org/10.1007/978-3-030-38040-3_31
  • Kristijansson, A. M., & Aegisson, T. (2022). Survey on technique and user profiling in unsupervised machine learning method. Journal of Machine and Computing, 9–16. https://doi.org/10.53759/7669/jmc202202002
  • Kumar, K., Ravi, V., Carr, M., & Nampally, R. K. (2008). Software development cost estimation using wavelet neural networks. Journal of Systems and Software, 81(11), 1853-1867. https://doi.org/10.1016/j.jss.2007.12.793
  • Lazzarini, V. (2021). Fundamental aspects of audio and music signals. In Spectral music design (pp. 50–72). Oxford University Press. https://doi.org/10.1093/oso/9780197524015.003.0003
  • Loizou, P. C. (2011). Speech quality assessment. In Studies in Computational Intelligence (pp. 623–654). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19551-8_23
  • Martinez Ramirez, M. A., Wang, O., Smaragdis, P., & Bryan, N. J. (2021). Differentiable signal processing with black-box audio effects. IEEE International Conference on Acoustics, Speech and Signal Processing. https://doi.org/10.1109/icassp39728.2021.9415103
  • McAlpine, K., Miranda, E., & Hoggar, S. (1999). Making music with algorithms: A case-study system. Computer Music Journal, 23(2), 19–30. https://doi.org/10.1162/014892699559733
  • Naeem, S., Ali, A., Anam, S., & Ahmed, M. M. (2022). An unsupervised machine learning algorithms: Comprehensive review. International Journal of Computing and Digital Systems, 13(1), 911–921. https://doi.org/10.12785/ijcds/130172
  • Nag, H., Karthikeyan, M., & Kumar, V. (2020). Automation in audio enhancement using unsupervised learning for ubiquitous computational environment. https://doi.org/10.1109/icict48043.2020.9112473
  • Najduchowski, E., Lewandowski, M., & Bobinski, P. (2018). Automatic audio mastering system. https://doi.org/10.1109/acoustics.2018.8502427
  • Narayanan, U., Unnikrishnan, A., Paul, V., & Joseph, S. (2017). A survey on various supervised classification algorithms. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 2118-2124). IEEE.
  • Omankwu, C., Ugwuja, E., & Kanu, C. (2023). Comprehensive review of supervised machine learning algorithms to identify the best and error free. International Journal of Scholarly Research in Engineering and Technology, 2(1), 013-019. https://doi.org/10.56781/ijsret.2023.2.1.0028
  • Pasquier, P., Eigenfeldt, A., Bown, O., & Dubnov, S. (2016). An introduction to musical metacreation. Computers in Entertainment, 14(2), 1–14. https://doi.org/10.1145/2930672
  • Prince, S., & Shankar Kumar, K. R. (2012). Survey on effective audio mastering. In Communications in computer and information science (pp. 293–301). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-35594-3_41
  • Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S., & Sainath, T. (2019). Deep learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing, 13(2), 66-83. https://doi.org/10.1109/JSTSP.2019.2908700
  • Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S., & Sainath, T. (2019). Deep learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing, 13(2), 66-83. https://doi.org/10.1109/JSTSP.2019.2908700
  • Rai, A., Rout, B. P., Bhushan, & Mehta, A. (2022). Unveiling the power of data: A journey through machine learning techniques. International Journal of Advanced Research in Science, Communication and Technology, 42–47. https://doi.org/10.48175/ijarsct-17807
  • Reddy, R., & Shyam, G. K. (2018). Analysis through machine learning techniques: A survey. https://doi.org/10.1109/icgciot.2018.8753050
  • Regli, W. C., Hu, X., Atwood, M., & Sun, W. (2000). A survey of design rationale systems: Approaches, representation, capture and retrieval. Engineering with Computers, 16(3-4), 209-235. https://doi.org/10.1007/PL00013715
  • Relaño-Iborra, H., May, T., Zaar, J., Scheidiger, C., & Dau, T. (2016). Predicting speech intelligibility based on a correlation metric in the envelope power spectrum domain. The Journal of the Acoustical Society of America, 140(4), 2670–2679. https://doi.org/10.1121/1.4964505
  • Saravanan, R., & Sujatha, P. (2018). A state of art techniques on machine learning algorithms: A perspective of supervised learning approaches in data classification. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 945-949). IEEE. https://doi.org/10.1109/ICCONS.2018.8663155
  • Singh, A., Thakur, N., & Sharma, A. (2016). A review of supervised machine learning algorithms. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 1310-1315). IEEE.
  • Sterne, J., & Razlogova, M. (2019). Machine learning audio effects: The acoustic entanglements of artificial intelligence and music production. Popular Music and Society, 42(2), 178-196.
  • Talbot-Smith, M. (2001). Audio engineer's reference book (2nd ed.). Focal Press.
  • Talbot-Smith, M. (2010). Sound engineering explained. Routledge. https://doi.org/10.4324/9780080498171
  • Välimäki, V., & Reiss, J. (2016). All about audio equalization: Solutions and frontiers. Applied Sciences, 6(5), 129. https://doi.org/10.3390/app6050129
  • Vickers, E. (2010). Metrics for Quantifying Loudness and Dynamics 1.
  • Vinoth, K., & Datta, S. V. (2021). Core machine learning algorithms: A comprehensive study. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(11), 2595-2604.
  • Whitaker, J., & Benson, K. B. (2001). Standard handbook of audio and radio engineering. McGraw-Hill.
  • Wong, P. C. (2021). A survey on unsupervised pattern recognition algorithms for data analytics. In International Conference on Innovative Computing and Communications (pp. 561-571). Springer.
  • Wu, X., Qiao, Y., Wang, X., & Tang, X. (2021). Unsupervised feature learning for audio. In Advances in Neural Information Processing Systems (pp. 1096-1104).
  • Zahra, F., Bostanci, Y., & Soyturk, M. (2024). Unsupervised machine learning for anomaly detection in Wi-Fi based IoT networks. IEEE. https://doi.org/10.1109/ICCSPA61559.2024.10794232

Machine learning in audio mastering: a comparative study

Year 2025, Volume: 6 Issue: 1, 47 - 65
https://doi.org/10.5281/zenodo.15074948

Abstract

References

  • Abel, J., Kaniewska, M., Guillaume, C., Tirry, W., Pulakka, H., Myllyla, V., Sjoberg, J., Alku, P., Katsir, I., Malah, D., Cohen, I., Tugtekin Turan, M. A., Erzin, E., Schlien, T., Vary, P., Nour-Eldin, A., Kabal, P., & Fingscheidt, T. (2016). A subjective listening test of six different artificial bandwidth extension approaches in English, Chinese, German, and Korean. IEEE International Conference on Acoustics, Speech and Signal Processing. https://doi.org/10.1109/icassp.2016.7472812
  • Alexander, L. (2020). An introduction to audio content analysis: Applications in signal processing and music informatics.
  • Ballou, G. (2002). Handbook for sound engineers (3rd ed.). Focal Press.
  • Barbosa, Á. (2006). Computer-supported cooperative work for music applications. Doctoral dissertation. http://www.tesisenxarxa.net
  • Benade, A. H., & Johns, R. H. (1977). Fundamentals of musical acoustics. American Journal of Physics, 45(1), 111–111. https://doi.org/10.1119/1.10883
  • Birtchnell, T. (2018). Listening without ears: Artificial intelligence in audio mastering. Big Data & Society, 5(2). https://doi.org/10.1177/2053951718808553
  • Cera, C. D., Regli, W. C., Braude, I., Shapirstein, Y., & Foster, C. V. (2002). A collaborative 3D environment for authoring design semantics. IEEE Computer Graphics and Applications, 22(3), 43–55. https://doi.org/10.1109/mcg.2002.999787
  • Cheng, K., & Olechowski, A. (2021). Some (Team) assembly required: An analysis of collaborative computer-aided design assembly. https://doi.org/10.1115/detc2021-68507
  • Cronhjort, A. (1992). A computer-controlled bowing machine (MUMS). Royal Institute of Technology Speech, Music and Hearing Quarterly Progress and Status Report, 33(2-3), 61-66. https://doi.org/10.1051/aacus/2024035
  • Gómez, A. M., Schwerin, B., & Paliwal, K. (2012). Improving objective intelligibility prediction by combining correlation and coherence-based methods with a measure based on the negative distortion ratio. Speech Communication, 54(3), 503–515. https://doi.org/10.1016/j.specom.2011.11.001
  • Hormozi, H., Hormozi, E., & Nohooji, H. R. (2012). The classification of the applicable machine learning methods in robot manipulators. International Journal of Machine Learning and Computing, 2(5), 560-563. https://doi.org/10.7763/IJMLC.2012.V2.189
  • Ivanović, M., & Radovanović, M. (2015). Modern machine learning techniques and their applications. In Electronics, Communications and Networks IV (pp. 833-846). CRC Press. https://doi.org/10.1201/b18592-153
  • Kates, J. M., & Arehart, K. H. (2004). A metric for evaluating speech intelligibility and quality in hearing aids. The Journal of the Acoustical Society of America, 116(4_Supplement), 2536–2537. https://doi.org/10.1121/1.4785122
  • Katz, B., & Katz, R. A. (2015). Mastering audio: The art and the science (3rd ed.). Focal Press.
  • Khanum, M., Mahboob, T., Imtiaz, W., Abdul Ghafoor, H., & Sehar, R. (2015). A survey on unsupervised machine learning algorithms for automation, classification and maintenance. International Journal of Computer Applications, 119(13), 34–39. https://doi.org/10.5120/21131-4058
  • Kirby, D. G., Feige, F., & Wustenhagen, U. (1994). ISO/MPEG subjective tests on multichannel audio coding systems: Practical realisation and test results. In IBC 1994 International Broadcasting Convention (pp. 132-139). IET. https://doi.org/10.1049/cp:19940741
  • Kotsiantis, S. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31(3), 249-268.
  • Kour, H., & Gondhi, N. (2020). Machine learning techniques: A survey. In Lecture Notes on Data Engineering and Communications Technologies (pp. 266–275). Springer International Publishing. https://doi.org/10.1007/978-3-030-38040-3_31
  • Kristijansson, A. M., & Aegisson, T. (2022). Survey on technique and user profiling in unsupervised machine learning method. Journal of Machine and Computing, 9–16. https://doi.org/10.53759/7669/jmc202202002
  • Kumar, K., Ravi, V., Carr, M., & Nampally, R. K. (2008). Software development cost estimation using wavelet neural networks. Journal of Systems and Software, 81(11), 1853-1867. https://doi.org/10.1016/j.jss.2007.12.793
  • Lazzarini, V. (2021). Fundamental aspects of audio and music signals. In Spectral music design (pp. 50–72). Oxford University Press. https://doi.org/10.1093/oso/9780197524015.003.0003
  • Loizou, P. C. (2011). Speech quality assessment. In Studies in Computational Intelligence (pp. 623–654). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19551-8_23
  • Martinez Ramirez, M. A., Wang, O., Smaragdis, P., & Bryan, N. J. (2021). Differentiable signal processing with black-box audio effects. IEEE International Conference on Acoustics, Speech and Signal Processing. https://doi.org/10.1109/icassp39728.2021.9415103
  • McAlpine, K., Miranda, E., & Hoggar, S. (1999). Making music with algorithms: A case-study system. Computer Music Journal, 23(2), 19–30. https://doi.org/10.1162/014892699559733
  • Naeem, S., Ali, A., Anam, S., & Ahmed, M. M. (2022). An unsupervised machine learning algorithms: Comprehensive review. International Journal of Computing and Digital Systems, 13(1), 911–921. https://doi.org/10.12785/ijcds/130172
  • Nag, H., Karthikeyan, M., & Kumar, V. (2020). Automation in audio enhancement using unsupervised learning for ubiquitous computational environment. https://doi.org/10.1109/icict48043.2020.9112473
  • Najduchowski, E., Lewandowski, M., & Bobinski, P. (2018). Automatic audio mastering system. https://doi.org/10.1109/acoustics.2018.8502427
  • Narayanan, U., Unnikrishnan, A., Paul, V., & Joseph, S. (2017). A survey on various supervised classification algorithms. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 2118-2124). IEEE.
  • Omankwu, C., Ugwuja, E., & Kanu, C. (2023). Comprehensive review of supervised machine learning algorithms to identify the best and error free. International Journal of Scholarly Research in Engineering and Technology, 2(1), 013-019. https://doi.org/10.56781/ijsret.2023.2.1.0028
  • Pasquier, P., Eigenfeldt, A., Bown, O., & Dubnov, S. (2016). An introduction to musical metacreation. Computers in Entertainment, 14(2), 1–14. https://doi.org/10.1145/2930672
  • Prince, S., & Shankar Kumar, K. R. (2012). Survey on effective audio mastering. In Communications in computer and information science (pp. 293–301). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-35594-3_41
  • Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S., & Sainath, T. (2019). Deep learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing, 13(2), 66-83. https://doi.org/10.1109/JSTSP.2019.2908700
  • Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S., & Sainath, T. (2019). Deep learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing, 13(2), 66-83. https://doi.org/10.1109/JSTSP.2019.2908700
  • Rai, A., Rout, B. P., Bhushan, & Mehta, A. (2022). Unveiling the power of data: A journey through machine learning techniques. International Journal of Advanced Research in Science, Communication and Technology, 42–47. https://doi.org/10.48175/ijarsct-17807
  • Reddy, R., & Shyam, G. K. (2018). Analysis through machine learning techniques: A survey. https://doi.org/10.1109/icgciot.2018.8753050
  • Regli, W. C., Hu, X., Atwood, M., & Sun, W. (2000). A survey of design rationale systems: Approaches, representation, capture and retrieval. Engineering with Computers, 16(3-4), 209-235. https://doi.org/10.1007/PL00013715
  • Relaño-Iborra, H., May, T., Zaar, J., Scheidiger, C., & Dau, T. (2016). Predicting speech intelligibility based on a correlation metric in the envelope power spectrum domain. The Journal of the Acoustical Society of America, 140(4), 2670–2679. https://doi.org/10.1121/1.4964505
  • Saravanan, R., & Sujatha, P. (2018). A state of art techniques on machine learning algorithms: A perspective of supervised learning approaches in data classification. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 945-949). IEEE. https://doi.org/10.1109/ICCONS.2018.8663155
  • Singh, A., Thakur, N., & Sharma, A. (2016). A review of supervised machine learning algorithms. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 1310-1315). IEEE.
  • Sterne, J., & Razlogova, M. (2019). Machine learning audio effects: The acoustic entanglements of artificial intelligence and music production. Popular Music and Society, 42(2), 178-196.
  • Talbot-Smith, M. (2001). Audio engineer's reference book (2nd ed.). Focal Press.
  • Talbot-Smith, M. (2010). Sound engineering explained. Routledge. https://doi.org/10.4324/9780080498171
  • Välimäki, V., & Reiss, J. (2016). All about audio equalization: Solutions and frontiers. Applied Sciences, 6(5), 129. https://doi.org/10.3390/app6050129
  • Vickers, E. (2010). Metrics for Quantifying Loudness and Dynamics 1.
  • Vinoth, K., & Datta, S. V. (2021). Core machine learning algorithms: A comprehensive study. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(11), 2595-2604.
  • Whitaker, J., & Benson, K. B. (2001). Standard handbook of audio and radio engineering. McGraw-Hill.
  • Wong, P. C. (2021). A survey on unsupervised pattern recognition algorithms for data analytics. In International Conference on Innovative Computing and Communications (pp. 561-571). Springer.
  • Wu, X., Qiao, Y., Wang, X., & Tang, X. (2021). Unsupervised feature learning for audio. In Advances in Neural Information Processing Systems (pp. 1096-1104).
  • Zahra, F., Bostanci, Y., & Soyturk, M. (2024). Unsupervised machine learning for anomaly detection in Wi-Fi based IoT networks. IEEE. https://doi.org/10.1109/ICCSPA61559.2024.10794232
There are 49 citations in total.

Details

Primary Language English
Subjects Music Technology and Recording
Journal Section AI, Metaverse and Advanced Technologies in Art
Authors

Seyhan Canyakan 0000-0001-6373-4245

Early Pub Date March 24, 2025
Publication Date
Submission Date February 23, 2025
Acceptance Date March 24, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Canyakan, S. (2025). Machine learning in audio mastering: a comparative study. Journal for the Interdisciplinary Art and Education, 6(1), 47-65. https://doi.org/10.5281/zenodo.15074948
JIAE is the most prestigious peer-reviewed academic journal in the field of art, where your article on art research has undergone high-level review and editing to achieve high visibility and citation potential.27919