Research Article
BibTex RIS Cite
Year 2018, Volume: 13 Issue: 2, 82 - 88, 30.06.2018

Abstract

References

  • Cross H, Morgan N, (1958) Continuous Frames Of Reinforced Concrete, 14th Ed., John Wiley and Sons Inc., New York, pp.126-155.
  • Portlant Cement Association, (1958) Handbook of frame constants, Beam Factors and moment coefficients for members of variable section, Pordland Cement Asssociation, Chicago,III. Resende and Doyle (1981) NONPRI-An effective nonprimatic three dimensional beam finite element. Comp. & Struc., 14, 71-77. Eisenberg,M.,(1985) Explicit Stiffness Matrices Nonprismatic Members, Comp & Struc., 20, 715-720.
  • Mezaini N, Balkaya, C, Çıtıpıtıoğlu E, (1991) Analysis of Frames with Nonprismatic Members, ASCE, 117, 1573-1591. TopçuA, (1992) Degişken Kesitli Düzlem çerçeve Elemanların Temel Rijitlik Katsayılarının ve Ankastrelik Kuvvetlerinin Analitik ve Romberg integrasyon Yöntemi ile Hesabı, İnsaat Müh. Bilgisayar Kullanımı III. Semp., İ.T.U., İstanbul.
  • Karaduman A, (1993) Değişken Kesitli Düzlem Taşıyıcı Sistemlerin Matris Deplasman Yöntemi ile Statik Çözümü, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisligi Anabilim Dalı, Konya, 132 s.
  • Fertis DG, Keene ME, (1990), Elastic and Inelastic Analysis of Non-Prismatic Members, J Struct. Eng., 116, 475-489.
  • Ruta, F, (1999), Application of Chebychev series to solution of non-prismatic beam vibration problems, J. Sound & Vibration 227, 449-467.
  • Yuksel SB, (2012), Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5, Struct. Engi. & Mech., 22, 849-866.
  • Archundia-Aranda H, Grande-Vega A, Tena-Colunga A, (2013) Behaviour of reinforced concrete haunched beams subjected to cyclic shear loading, J. Struct. Eng., 49, 27-42.
  • Raju P.M, Rajsekhar K, Sandeep T.R,(2014), Performance of non-prismatic simply supported prestressed concrete beams, Struct. Eng. & Mech., 52, 723-738.
  • Orr JJ, Ibell TJ, Darby AP, (2014) Shear behavior of non-prismatic steel reinforced concrete beams, Eng. Struct., 71, 48-59.
  • Thermou GE, Katakalos K., Manos G.(2015), Influence of the cross section shape on the behaviour of SRG-confined prismatic concrete specimens, Materials and Struct./Materiaux et Constructions, 19p
  • Topçu A, (1992) Degişken Kesitli Düzlem çerçeve Elemanların Temel Rijitlik Katsayılarının ve Ankastrelik Kuvvetlerinin Analitik ve Romberg integrasyon Yöntemi ile Hesabı, İnsaat Mühendisliginde Bilgisayar Kullanımı III. Sempozyumu, İ.T.U., İstanbul.
  • Çakıroglu A, Çetmeli E, (1976) Yapı Statiği, Cilt II, İ.T.Ü.Matbaası, İstanbul.

The Effect of Axial Selection on Static Solution Results in Heat Affected Non-Prismatic Elementary Frames

Year 2018, Volume: 13 Issue: 2, 82 - 88, 30.06.2018

Abstract

In this study, the
influence of the bar axis selection on the static solution results was
investigated in-plane carrier systems consisting of non-prismatic bar elements
(height variable bar elements, also known as hunched, along the axis) in terms
of equal or different heat exchange effect. On the sample considered, the
non-prismatic elements are considered as straight-axis bars. The results
obtained from the classical analysis (the
section change is taken into account only at the bending stiffness in this
method) and the solution results, which are proposed for non-prismatic
elements, obtained by considering the weight axis of the element as a bar axis
are compared and the relative differences was detected with differences between
two results. 

References

  • Cross H, Morgan N, (1958) Continuous Frames Of Reinforced Concrete, 14th Ed., John Wiley and Sons Inc., New York, pp.126-155.
  • Portlant Cement Association, (1958) Handbook of frame constants, Beam Factors and moment coefficients for members of variable section, Pordland Cement Asssociation, Chicago,III. Resende and Doyle (1981) NONPRI-An effective nonprimatic three dimensional beam finite element. Comp. & Struc., 14, 71-77. Eisenberg,M.,(1985) Explicit Stiffness Matrices Nonprismatic Members, Comp & Struc., 20, 715-720.
  • Mezaini N, Balkaya, C, Çıtıpıtıoğlu E, (1991) Analysis of Frames with Nonprismatic Members, ASCE, 117, 1573-1591. TopçuA, (1992) Degişken Kesitli Düzlem çerçeve Elemanların Temel Rijitlik Katsayılarının ve Ankastrelik Kuvvetlerinin Analitik ve Romberg integrasyon Yöntemi ile Hesabı, İnsaat Müh. Bilgisayar Kullanımı III. Semp., İ.T.U., İstanbul.
  • Karaduman A, (1993) Değişken Kesitli Düzlem Taşıyıcı Sistemlerin Matris Deplasman Yöntemi ile Statik Çözümü, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisligi Anabilim Dalı, Konya, 132 s.
  • Fertis DG, Keene ME, (1990), Elastic and Inelastic Analysis of Non-Prismatic Members, J Struct. Eng., 116, 475-489.
  • Ruta, F, (1999), Application of Chebychev series to solution of non-prismatic beam vibration problems, J. Sound & Vibration 227, 449-467.
  • Yuksel SB, (2012), Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5, Struct. Engi. & Mech., 22, 849-866.
  • Archundia-Aranda H, Grande-Vega A, Tena-Colunga A, (2013) Behaviour of reinforced concrete haunched beams subjected to cyclic shear loading, J. Struct. Eng., 49, 27-42.
  • Raju P.M, Rajsekhar K, Sandeep T.R,(2014), Performance of non-prismatic simply supported prestressed concrete beams, Struct. Eng. & Mech., 52, 723-738.
  • Orr JJ, Ibell TJ, Darby AP, (2014) Shear behavior of non-prismatic steel reinforced concrete beams, Eng. Struct., 71, 48-59.
  • Thermou GE, Katakalos K., Manos G.(2015), Influence of the cross section shape on the behaviour of SRG-confined prismatic concrete specimens, Materials and Struct./Materiaux et Constructions, 19p
  • Topçu A, (1992) Degişken Kesitli Düzlem çerçeve Elemanların Temel Rijitlik Katsayılarının ve Ankastrelik Kuvvetlerinin Analitik ve Romberg integrasyon Yöntemi ile Hesabı, İnsaat Mühendisliginde Bilgisayar Kullanımı III. Sempozyumu, İ.T.U., İstanbul.
  • Çakıroglu A, Çetmeli E, (1976) Yapı Statiği, Cilt II, İ.T.Ü.Matbaası, İstanbul.
There are 13 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Adnan Karaduman This is me

Publication Date June 30, 2018
Acceptance Date December 26, 2017
Published in Issue Year 2018 Volume: 13 Issue: 2

Cite

APA Karaduman, A. (2018). The Effect of Axial Selection on Static Solution Results in Heat Affected Non-Prismatic Elementary Frames. Journal of International Environmental Application and Science, 13(2), 82-88.
AMA Karaduman A. The Effect of Axial Selection on Static Solution Results in Heat Affected Non-Prismatic Elementary Frames. J. Int. Environmental Application & Science. June 2018;13(2):82-88.
Chicago Karaduman, Adnan. “The Effect of Axial Selection on Static Solution Results in Heat Affected Non-Prismatic Elementary Frames”. Journal of International Environmental Application and Science 13, no. 2 (June 2018): 82-88.
EndNote Karaduman A (June 1, 2018) The Effect of Axial Selection on Static Solution Results in Heat Affected Non-Prismatic Elementary Frames. Journal of International Environmental Application and Science 13 2 82–88.
IEEE A. Karaduman, “The Effect of Axial Selection on Static Solution Results in Heat Affected Non-Prismatic Elementary Frames”, J. Int. Environmental Application & Science, vol. 13, no. 2, pp. 82–88, 2018.
ISNAD Karaduman, Adnan. “The Effect of Axial Selection on Static Solution Results in Heat Affected Non-Prismatic Elementary Frames”. Journal of International Environmental Application and Science 13/2 (June 2018), 82-88.
JAMA Karaduman A. The Effect of Axial Selection on Static Solution Results in Heat Affected Non-Prismatic Elementary Frames. J. Int. Environmental Application & Science. 2018;13:82–88.
MLA Karaduman, Adnan. “The Effect of Axial Selection on Static Solution Results in Heat Affected Non-Prismatic Elementary Frames”. Journal of International Environmental Application and Science, vol. 13, no. 2, 2018, pp. 82-88.
Vancouver Karaduman A. The Effect of Axial Selection on Static Solution Results in Heat Affected Non-Prismatic Elementary Frames. J. Int. Environmental Application & Science. 2018;13(2):82-8.

“Journal of International Environmental Application and Science”