Research Article
BibTex RIS Cite

Decontamination of fresh parsley leaves by sequential wash treatment in chlorine and lactic acid solutions

Year 2025, Volume: 5 Issue: 2, 737 - 750, 31.07.2025
https://doi.org/10.61112/jiens.1676971

Abstract

Due to concerns about the formation of carcinogenic disinfection by-products (DBPs) during decontamination process of fresh produce by chlorine based sanitisers, there has been interest in finding alternative sanitizers. Despite the intensive research, there is still no widely accepted cost effective sanitizer and most of the sanitizers in the marketplace has limited decontamination efficiency. By using parsley leaves as test vegetable, this study aimed to investigate the possibility of using a two stage sequential wash to increase the disinfection efficiency, while reducing the concentration of chlorine by application of a second stage wash with lactic acid (LA) solution. Washing of parsley leaves in 100 ±10 ppm chlorine solution for 3 min resulted in an average of 1.01±0.64 log reduction, whereas a 1 min wash in 1.0% (w/w) LA returned an average of 1.25±0.39 log reduction for TAC. Increasing washing time in chlorine or LA solutions alone did not increase the decontamination efficiency, significantly. However, 3 min wash in 100 ±10 ppm chlorine, followed by a 1 min wash 1.0% (w/w) LA (sequential wash) increased the decontamination efficiency significantly returning an average of 2.45±0.52 log reduction in total viable count. Sequential wash was also effective in reduction of artificially inoculated non-pathogenic strains of Escherichia coli, Salmonella and Listeria spp. Concentration of DBPs determined by GC-MS in wash water samples were below the limits set by United States Environmental Protection Agency.

Ethical Statement

We hereby declare that the paper has not been published elsewhere and is not currently under consideration for publication in any other journal. The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Supporting Institution

Trakya University Office of Scientific Research Projects Coordinations

Project Number

(TUBAP, Grant No.: 2011/83)

Thanks

This research was supported by Trakya University Office of Scientific Research Projects Coordinations (TUBAP, Grant No.: 2011/83). The authors thank to Mr. Tayfun for his help on GC-MS analyses, C. Pekgirtine and N. Öner for their help on experimental work.

References

  • Olmez H, Kretzschmar U (2009) Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT Food Sci Technol 42(3):686–693. https://doi.org/10.1016/j.lwt.2008.08.001
  • Beuchat LR, Adler BB, Lang MM (2004) Efficacy of chlorine and a peroxyacetic acid sanitizer in killing Listeria monocytogenes on iceberg and Romaine lettuce using simulated commercial processing conditions. J Food Prot 67(6):1238–1242. https://doi.org/10.4315/0362-028X-67.6.1238
  • Goodburn C, Wallace CA (2013) The microbiological efficacy of decontamination methodologies for fresh produce: a review. Food Control 32(2):418–427. http://dx.doi.org/10.1016/j.foodcont.2012.12.012
  • Richardson SD (2003) Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends Anal Chem 22(10):666–684. https://doi.org/10.1016/S0165-9936(03)01003-3
  • Uyak V, Koyuncu I, Oktem I, Cakmakci M, Toroz I (2008) Removal of trihalomethanes from drinking water by nanofiltration membranes. J Hazard Mater 152(2):789–794. https://doi.org/10.1016/j.jhazmat.2007.07.082
  • Gómez-López VM, Marín A, Medina-Martínez MS, Gil MI, Allende A (2013) Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach. Postharvest Biol Technol 85:210–217. http://dx.doi.org/10.1016/j.postharvbio.2013.05.012
  • Meireles A, Giaouris E, Simões M (2016) Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Res Int 82:71–85. http://dx.doi.org/10.1016/j.foodres.2016.01.021
  • Egwari LO, Effiok WW, Ugboko HU (2020) Chapter 7 - Disinfection by-products in food and beverages. In MNV Prasad (ed) Disinfection By-products in Drinking Water (pp. 169-183). Butterworth-Heinemann
  • World Health Organization (2023) Prevention and control of microbiological hazards in fresh fruits and vegetables–Part 4: specific commodities. Meeting report. World Health Organization.
  • Gómez-López VM, Lannoo A-S, Gil MI, Allende A (2014) Minimum free chlorine residual level required for the inactivation of Escherichia coli O157:H7 and trihalomethane generation during dynamic washing of fresh-cut spinach. Food Control 42:132–138. http://dx.doi.org/10.1016/j.foodcont.2014.01.034
  • López-Gálvez F, Allende A, Truchado P, Martínez-Sánchez A, Tudela JA, Selma MV, Gil MI (2010) Suitability of aqueous chlorine dioxide versus sodium hypochlorite as an effective sanitizer for preserving quality of fresh-cut lettuce while avoiding by-product formation. Postharvest Biol Technol 55(1):53–60. https://doi.org/10.1016/j.postharvbio.2009.08.001
  • Singh N, Singh RK, Bhunia AK, Stroshine RL (2002) Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebensm-Wiss Technol 35(8):720–729. https://doi.org/10.1006/fstl.2002.0933
  • Singh N, Singh RK, Bhunia AK (2003) Sequential disinfection of Escherichia coli O157:H7 inoculated alfalfa seeds before and during sprouting using aqueous chlorine dioxide, ozonated water, and thyme essential oil. Lebensm-Wiss Technol 36(2):235–243. https://doi.org/10.1016/S0023-6438(02)00224-4
  • Wang H, Feng H, Luo Y (2004) Microbial reduction and storage quality of fresh-cut cilantro washed with acidic electrolyzed water and aqueous ozone. Food Res Int 37(10):949–956. https://doi.org/10.1016/j.foodres.2004.06.004
  • FDA (2014) Analysis and Evaluation of Preventive Control Measures for the Control and Reduction/Elimination of Microbial Hazards on Fresh and Fresh-Cut Produce Retrieved 07/26/2017, from https://www.fda.gov/Food/FoodScienceResearch/ucm091363.htm
  • Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. J Hyg 38:732–749. https://doi.org/10.1017/S002217240001158X
  • Praeger U, Herppich WB, Hassenberg K (2018) Aqueous chlorine dioxide treatment of horticultural produce: effects on microbial safety and produce quality–a review. Crit Rev Food Sci Nutr 58(2):318–333. https://doi.org/10.1080/10408398.2016.1169157
  • Sukul S, Sheth M (2012) Can sanitizers reduce microbial load of coriander leaves? Nutr Food Sci 42(1):12–20. https://doi.org/10.1108/00346651211196483
  • Lambert RJ, Stratford M (1999) Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 86(1):157–164. https://doi.org/10.1046/j.1365-2672.1999.00646.x
  • Gurtler JB, Bailey RB, Jin TZ, Fan X (2014) Reduction of an E. coli O157:H7 and Salmonella composite on fresh strawberries by varying antimicrobial washes and vacuum perfusion. Int J Food Microbiol 189:113–118. https://doi.org/10.1016/j.ijfoodmicro.2014.08.005
  • Klaiber RGn, Baur S, Wolf G, Hammes WP, Carle R (2005) Quality of minimally processed carrots as affected by warm water washing and chlorination. Innov Food Sci Emerg Technol 6(3):351–362. https://doi.org/10.1016/j.ifset.2005.03.002
  • National Primary Drinking Water Regulations (2009) https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations, accesed on 12.04.2025
  • Gil MI, Selma MV, López-Gálvez F, Allende A (2009) Fresh-cut product sanitation and wash water disinfection: problems and solutions. Int J Food Microbiol 134(1-2):37–45. https://doi.org/10.1016/j.ijfoodmicro.2009.05.021
  • Sagong HG, Lee SY, Chang PS, Heu S, Ryu S, Choi YJ, Kang DH (2011) Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int J Food Microbiol 145(1):287–292. https://doi.org/10.1016/j.ijfoodmicro.2011.01.010
  • Akbas MY, Olmez H (2007) Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Lett Appl Microbiol 44(6):619–624. https://doi.org/10.1111/j.1472-765X.2007.02127.x
  • Velázquez LdC, Barbini NB, Escudero ME, Estrada CL, Guzmán AMSd (2009) Evaluation of chlorine, benzalkonium chloride and lactic acid as sanitizers for reducing Escherichia coli O157:H7 and Yersinia enterocolitica on fresh vegetables. Food Control 20(3):262–268. http://dx.doi.org/10.1016/j.foodcont.2008.05.012
  • Wang C, Wang S, Chang T, Shi L, Yang H, Shao Y, Cui M (2013) Efficacy of lactic acid in reducing foodborne pathogens in minimally processed lotus sprouts. Food Control 30(2):721–726. http://dx.doi.org/10.1016/j.foodcont.2012.08.024
  • Van Haute S, López-Gálvez F, Gómez-López VM, Eriksson M, Devlieghere F, Allende A, Sampers I (2015) Methodology for modeling the disinfection efficiency of fresh-cut leafy vegetables wash water applied on peracetic acid combined with lactic acid. Int J Food Microbiol 208:102–113. https://doi.org/10.1016/j.ijfoodmicro.2015.05.020
  • Poimenidou SV, Bikouli VC, Gardeli C, Mitsi C, Tarantilis PA, Nychas G-J, Skandamis PN (2016) Effect of single or combined chemical and natural antimicrobial interventions on Escherichia coli O157:H7, total microbiota and color of packaged spinach and lettuce. Int J Food Microbiol 220:6–18. https://doi.org/10.1016/j.ijfoodmicro.2015.12.013
  • Ricke SC (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82(4):632–639. https://doi.org/10.1093/ps/82.4.632
  • Smigic N, Rajkovic A, Nielsen DS, Arneborg N, Siegumfeldt H, Devlieghere F (2010) Survival of lactic acid and chlorine dioxide treated Campylobacter jejuni under suboptimal conditions of pH, temperature and modified atmosphere. Int J Food Microbiol 141:S140–S146. https://doi.org/10.1016/j.ijfoodmicro.2010.01.026
  • Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66(5):2001–2005. https://doi.org/10.1128/AEM.66.5.2001-2005.2000
  • Venkobachar C, Iyengar L, Prabhakara Rao AVS (1977) Mechanism of disinfection: effect of chlorine on cell membrane functions. Water Res 11(8):727–729. http://dx.doi.org/10.1016/0043-1354(77)90114-2
  • Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37(1):77–86. http://dx.doi.org/10.1016/S0167-7012(99)00048-2
  • Lang MM, Ingham BH, Ingham SC (2000) Efficacy of novel organic acid and hypochlorite treatments for eliminating Escherichia coli O157:H7 from alfalfa seeds prior to sprouting. Int J Food Microbiol 58(1-2):73–82. https://doi.org/10.1016/S0168-1605(00)00297-X
  • Seymour IJ, Appleton H (2001) Foodborne viruses and fresh produce. J Appl Microbiol 91(5):759–773. https://doi.org/10.1046/j.1365-2672.2001.01427.x
  • Li D, De Keuckelaere A, Uyttendaele M (2015) Fate of foodborne viruses in the "farm to fork" chain of fresh produce. Compr Rev Food Sci Food Saf 14(6):755–770. https://doi.org/10.1111/1541-4337.12163
  • Yépiz-Gómez MS, Gerba CP, Bright KR (2013) Survival of respiratory viruses on fresh produce. Food Environ Virol 5(3):150–156. https://doi.org/10.1007/s12560-013-9114-4
  • Amirian ES (2020) Potential fecal transmission of SARS-CoV-2: current evidence and implications for public health. Int J Infect Dis 95:363–370. https://doi.org/10.1016/j.ijid.2020.04.057
  • Pan Y, Zhang D, Yang P, Poon LLM, Wang Q (2020) Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis 20(4):411–412. https://doi.org/10.1016/S1473-3099(20)30113-4
  • Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W (2020) Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 323(18):1843–1844. https://doi.org/10.1001/jama.2020.3786
  • Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, Wang YY, Xiao GF, Yan B, Shi ZL, Zhou P (2020) Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect 9(1):386–389. https://doi.org/10.1080/22221751.2020.1729071
  • Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O'Brien JW, Choi PM, Kitajima M, Simpson SL, Li J, Tscharke B, Verhagen R, Smith WJM, Zaugg J, Dierens L, Hugenholtz P, Thomas KV, Mueller JF (2020) First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ 728:138764. https://doi.org/10.1016/j.scitotenv.2020.138764
  • Lodder W, de Roda Husman AM (2020) SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol Hepatol 5(6):533–534. https://doi.org/10.1016/S2468-1253(20)30087-X
  • Galanakis CM (2020) The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods 9(4):523. https://doi.org/10.3390/foods9040523
  • Geller C, Varbanov M, Duval RE (2012) Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses 4(11):3044–3068. https://doi.org/10.3390/v4113044
  • Kampf G, Todt D, Pfaender S, Steinmann E (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 104(3):246–251. https://doi.org/10.1016/j.jhin.2020.01.022

Taze maydanoz yapraklarının klor ve laktik asit solüsyonlarında ardışık yıkama işlemiyle dekontaminasyonu

Year 2025, Volume: 5 Issue: 2, 737 - 750, 31.07.2025
https://doi.org/10.61112/jiens.1676971

Abstract

Klor bazlı dezenfektanlar ile taze ürünlerin dekontaminasyon süreci sırasında kanserojen dezenfeksiyon yan ürünlerinin (DBPs) oluşumu konusundaki endişeler nedeniyle alternatif dezenfektanlar bulma konusunda ilgi artmaktadır. Yoğun araştırmalara rağmen, hala yaygın olarak kabul görmüş uygun maliyetli bir dezenfektan bulunmamaktadır ve piyasadaki dezenfektanların çoğu sınırlı dekontaminasyon verimliliğine sahiptir. u çalışmada, maydanoz yaprakları test sebzesi olarak kullanılarak, dezenfeksiyon verimliliğini artırmak amacıyla iki aşamalı ardışık yıkamanın uygulanabilirliği araştırılmış ve laktik asit (LA) solüsyonu ile yapılan ikinci aşama yıkama ile klor konsantrasyonunun azaltılması hedeflenmiştir. Maydanoz yapraklarının 100 ± 10 ppm klor solüsyonunda 3 dakika yıkanması toplam canlı sayısında ortalama 1,01 ± 0,64 log azalmaya yol açarken, %1,0 (a/a) LA’da 1 dakikalık yıkama ortalama 1,25 ± 0,39 log azalmaya yol açmıştır. Sadece klor veya LA solüsyonlarında yıkama süresini artırmak, dekontaminasyon verimliliğini önemli ölçüde artırmamıştır. Bununla birlikte, 100 ± 10 ppm klorda 3 dakikalık yıkama, ardından %1,0 (a/a) LA’da 1 dakikalık yıkama (sıralı yıkama), dekontaminasyon verimliliğini önemli ölçüde artırarak toplam canlı sayısında ortalama 2,45 ± 0,52 log azalma sağlamıştır. Sıralı yıkamanın, yapay olarak aşılanmış patojenik olmayan Escherichia coli, Salmonella ve Listeria türlerinin azaltılmasında da etkili olduğu bulunmuştur. Yıkama suyu örneklerinde GC-MS ile belirlenen DBPs konsantrasyonlarının Amerika Birleşik Devletleri Çevre Koruma Ajansı tarafından belirlenen limitlerin altında olduğu tespit edilmiştir.

Project Number

(TUBAP, Grant No.: 2011/83)

References

  • Olmez H, Kretzschmar U (2009) Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT Food Sci Technol 42(3):686–693. https://doi.org/10.1016/j.lwt.2008.08.001
  • Beuchat LR, Adler BB, Lang MM (2004) Efficacy of chlorine and a peroxyacetic acid sanitizer in killing Listeria monocytogenes on iceberg and Romaine lettuce using simulated commercial processing conditions. J Food Prot 67(6):1238–1242. https://doi.org/10.4315/0362-028X-67.6.1238
  • Goodburn C, Wallace CA (2013) The microbiological efficacy of decontamination methodologies for fresh produce: a review. Food Control 32(2):418–427. http://dx.doi.org/10.1016/j.foodcont.2012.12.012
  • Richardson SD (2003) Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends Anal Chem 22(10):666–684. https://doi.org/10.1016/S0165-9936(03)01003-3
  • Uyak V, Koyuncu I, Oktem I, Cakmakci M, Toroz I (2008) Removal of trihalomethanes from drinking water by nanofiltration membranes. J Hazard Mater 152(2):789–794. https://doi.org/10.1016/j.jhazmat.2007.07.082
  • Gómez-López VM, Marín A, Medina-Martínez MS, Gil MI, Allende A (2013) Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach. Postharvest Biol Technol 85:210–217. http://dx.doi.org/10.1016/j.postharvbio.2013.05.012
  • Meireles A, Giaouris E, Simões M (2016) Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Res Int 82:71–85. http://dx.doi.org/10.1016/j.foodres.2016.01.021
  • Egwari LO, Effiok WW, Ugboko HU (2020) Chapter 7 - Disinfection by-products in food and beverages. In MNV Prasad (ed) Disinfection By-products in Drinking Water (pp. 169-183). Butterworth-Heinemann
  • World Health Organization (2023) Prevention and control of microbiological hazards in fresh fruits and vegetables–Part 4: specific commodities. Meeting report. World Health Organization.
  • Gómez-López VM, Lannoo A-S, Gil MI, Allende A (2014) Minimum free chlorine residual level required for the inactivation of Escherichia coli O157:H7 and trihalomethane generation during dynamic washing of fresh-cut spinach. Food Control 42:132–138. http://dx.doi.org/10.1016/j.foodcont.2014.01.034
  • López-Gálvez F, Allende A, Truchado P, Martínez-Sánchez A, Tudela JA, Selma MV, Gil MI (2010) Suitability of aqueous chlorine dioxide versus sodium hypochlorite as an effective sanitizer for preserving quality of fresh-cut lettuce while avoiding by-product formation. Postharvest Biol Technol 55(1):53–60. https://doi.org/10.1016/j.postharvbio.2009.08.001
  • Singh N, Singh RK, Bhunia AK, Stroshine RL (2002) Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebensm-Wiss Technol 35(8):720–729. https://doi.org/10.1006/fstl.2002.0933
  • Singh N, Singh RK, Bhunia AK (2003) Sequential disinfection of Escherichia coli O157:H7 inoculated alfalfa seeds before and during sprouting using aqueous chlorine dioxide, ozonated water, and thyme essential oil. Lebensm-Wiss Technol 36(2):235–243. https://doi.org/10.1016/S0023-6438(02)00224-4
  • Wang H, Feng H, Luo Y (2004) Microbial reduction and storage quality of fresh-cut cilantro washed with acidic electrolyzed water and aqueous ozone. Food Res Int 37(10):949–956. https://doi.org/10.1016/j.foodres.2004.06.004
  • FDA (2014) Analysis and Evaluation of Preventive Control Measures for the Control and Reduction/Elimination of Microbial Hazards on Fresh and Fresh-Cut Produce Retrieved 07/26/2017, from https://www.fda.gov/Food/FoodScienceResearch/ucm091363.htm
  • Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. J Hyg 38:732–749. https://doi.org/10.1017/S002217240001158X
  • Praeger U, Herppich WB, Hassenberg K (2018) Aqueous chlorine dioxide treatment of horticultural produce: effects on microbial safety and produce quality–a review. Crit Rev Food Sci Nutr 58(2):318–333. https://doi.org/10.1080/10408398.2016.1169157
  • Sukul S, Sheth M (2012) Can sanitizers reduce microbial load of coriander leaves? Nutr Food Sci 42(1):12–20. https://doi.org/10.1108/00346651211196483
  • Lambert RJ, Stratford M (1999) Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 86(1):157–164. https://doi.org/10.1046/j.1365-2672.1999.00646.x
  • Gurtler JB, Bailey RB, Jin TZ, Fan X (2014) Reduction of an E. coli O157:H7 and Salmonella composite on fresh strawberries by varying antimicrobial washes and vacuum perfusion. Int J Food Microbiol 189:113–118. https://doi.org/10.1016/j.ijfoodmicro.2014.08.005
  • Klaiber RGn, Baur S, Wolf G, Hammes WP, Carle R (2005) Quality of minimally processed carrots as affected by warm water washing and chlorination. Innov Food Sci Emerg Technol 6(3):351–362. https://doi.org/10.1016/j.ifset.2005.03.002
  • National Primary Drinking Water Regulations (2009) https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations, accesed on 12.04.2025
  • Gil MI, Selma MV, López-Gálvez F, Allende A (2009) Fresh-cut product sanitation and wash water disinfection: problems and solutions. Int J Food Microbiol 134(1-2):37–45. https://doi.org/10.1016/j.ijfoodmicro.2009.05.021
  • Sagong HG, Lee SY, Chang PS, Heu S, Ryu S, Choi YJ, Kang DH (2011) Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int J Food Microbiol 145(1):287–292. https://doi.org/10.1016/j.ijfoodmicro.2011.01.010
  • Akbas MY, Olmez H (2007) Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Lett Appl Microbiol 44(6):619–624. https://doi.org/10.1111/j.1472-765X.2007.02127.x
  • Velázquez LdC, Barbini NB, Escudero ME, Estrada CL, Guzmán AMSd (2009) Evaluation of chlorine, benzalkonium chloride and lactic acid as sanitizers for reducing Escherichia coli O157:H7 and Yersinia enterocolitica on fresh vegetables. Food Control 20(3):262–268. http://dx.doi.org/10.1016/j.foodcont.2008.05.012
  • Wang C, Wang S, Chang T, Shi L, Yang H, Shao Y, Cui M (2013) Efficacy of lactic acid in reducing foodborne pathogens in minimally processed lotus sprouts. Food Control 30(2):721–726. http://dx.doi.org/10.1016/j.foodcont.2012.08.024
  • Van Haute S, López-Gálvez F, Gómez-López VM, Eriksson M, Devlieghere F, Allende A, Sampers I (2015) Methodology for modeling the disinfection efficiency of fresh-cut leafy vegetables wash water applied on peracetic acid combined with lactic acid. Int J Food Microbiol 208:102–113. https://doi.org/10.1016/j.ijfoodmicro.2015.05.020
  • Poimenidou SV, Bikouli VC, Gardeli C, Mitsi C, Tarantilis PA, Nychas G-J, Skandamis PN (2016) Effect of single or combined chemical and natural antimicrobial interventions on Escherichia coli O157:H7, total microbiota and color of packaged spinach and lettuce. Int J Food Microbiol 220:6–18. https://doi.org/10.1016/j.ijfoodmicro.2015.12.013
  • Ricke SC (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82(4):632–639. https://doi.org/10.1093/ps/82.4.632
  • Smigic N, Rajkovic A, Nielsen DS, Arneborg N, Siegumfeldt H, Devlieghere F (2010) Survival of lactic acid and chlorine dioxide treated Campylobacter jejuni under suboptimal conditions of pH, temperature and modified atmosphere. Int J Food Microbiol 141:S140–S146. https://doi.org/10.1016/j.ijfoodmicro.2010.01.026
  • Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66(5):2001–2005. https://doi.org/10.1128/AEM.66.5.2001-2005.2000
  • Venkobachar C, Iyengar L, Prabhakara Rao AVS (1977) Mechanism of disinfection: effect of chlorine on cell membrane functions. Water Res 11(8):727–729. http://dx.doi.org/10.1016/0043-1354(77)90114-2
  • Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37(1):77–86. http://dx.doi.org/10.1016/S0167-7012(99)00048-2
  • Lang MM, Ingham BH, Ingham SC (2000) Efficacy of novel organic acid and hypochlorite treatments for eliminating Escherichia coli O157:H7 from alfalfa seeds prior to sprouting. Int J Food Microbiol 58(1-2):73–82. https://doi.org/10.1016/S0168-1605(00)00297-X
  • Seymour IJ, Appleton H (2001) Foodborne viruses and fresh produce. J Appl Microbiol 91(5):759–773. https://doi.org/10.1046/j.1365-2672.2001.01427.x
  • Li D, De Keuckelaere A, Uyttendaele M (2015) Fate of foodborne viruses in the "farm to fork" chain of fresh produce. Compr Rev Food Sci Food Saf 14(6):755–770. https://doi.org/10.1111/1541-4337.12163
  • Yépiz-Gómez MS, Gerba CP, Bright KR (2013) Survival of respiratory viruses on fresh produce. Food Environ Virol 5(3):150–156. https://doi.org/10.1007/s12560-013-9114-4
  • Amirian ES (2020) Potential fecal transmission of SARS-CoV-2: current evidence and implications for public health. Int J Infect Dis 95:363–370. https://doi.org/10.1016/j.ijid.2020.04.057
  • Pan Y, Zhang D, Yang P, Poon LLM, Wang Q (2020) Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis 20(4):411–412. https://doi.org/10.1016/S1473-3099(20)30113-4
  • Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W (2020) Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 323(18):1843–1844. https://doi.org/10.1001/jama.2020.3786
  • Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, Wang YY, Xiao GF, Yan B, Shi ZL, Zhou P (2020) Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect 9(1):386–389. https://doi.org/10.1080/22221751.2020.1729071
  • Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O'Brien JW, Choi PM, Kitajima M, Simpson SL, Li J, Tscharke B, Verhagen R, Smith WJM, Zaugg J, Dierens L, Hugenholtz P, Thomas KV, Mueller JF (2020) First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ 728:138764. https://doi.org/10.1016/j.scitotenv.2020.138764
  • Lodder W, de Roda Husman AM (2020) SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol Hepatol 5(6):533–534. https://doi.org/10.1016/S2468-1253(20)30087-X
  • Galanakis CM (2020) The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods 9(4):523. https://doi.org/10.3390/foods9040523
  • Geller C, Varbanov M, Duval RE (2012) Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses 4(11):3044–3068. https://doi.org/10.3390/v4113044
  • Kampf G, Todt D, Pfaender S, Steinmann E (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 104(3):246–251. https://doi.org/10.1016/j.jhin.2020.01.022
There are 47 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Sami Bulut 0000-0002-6677-1612

İrem Damar 0000-0002-5521-2233

Emel Yılmaz 0000-0002-1766-3762

Project Number (TUBAP, Grant No.: 2011/83)
Publication Date July 31, 2025
Submission Date April 15, 2025
Acceptance Date June 28, 2025
Published in Issue Year 2025 Volume: 5 Issue: 2

Cite

APA Bulut, S., Damar, İ., & Yılmaz, E. (2025). Decontamination of fresh parsley leaves by sequential wash treatment in chlorine and lactic acid solutions. Journal of Innovative Engineering and Natural Science, 5(2), 737-750. https://doi.org/10.61112/jiens.1676971


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0