Research Article
BibTex RIS Cite

MHD Nanofluidic Flow Past a Nonlinear Exponentially Stretched Plate with Enhanced Thermal Source/Sink and Thermo-migration

Year 2023, Volume: 6 Issue: 1, 13 - 27, 26.07.2023

Abstract

The study investigates the heat transfer characteristics of a nanofluidic flow past a non-linear exponentially stretched plate in the presence of enriched heat generation/absorption through the application of the Standard approximation technique. The significance of the study include but not limited to drug targeting, food processing industries, manufacturing firms, solar power technology and nuclear mechanisations etc. The mathematical models governing the fluid flow is modelled through the Navier-Stokes equations. Thus, such partial differential expressions (PDE) are transformed into coupled ordinary differential models (CODM) through the application of adequate similarity transformation variables. Thereafter, the resulting equations are solved by the use of the standard series approximation technique with appropriate boundary conditions. However, the Wolfram Mathematica package has been applied for the numerical solutions. Thus, the results showed that the presence of nanoparticles and thermal source/sink significantly affects the velocity, temperature and mass concentration. It was found that an increase in the Hartman number leads to a decline in the velocity of the flow whereas the velocity distribution surges as radiation and Grashof parameters appreciate in values. Similarly, a rise in the thermo-migration factor breeds an upsurge in temperature and nanoparticle concentration respectively. The results also showed that an improvement in the values of Prandtl and Schmidt numbers led to a reduction in the thermal and mass boundary layer thicknesses. Therefore, this study provides an insight into the heat transfer characteristics of nanofluidic flow and can be used in various engineering applications such as cooling of electronic devices and nuclear reactors.

Supporting Institution

None

Project Number

None

Thanks

We the authors of the research manuscript already submitted to this journal are grateful for the contribution of knowledge to the academic community in particular and the world at large.

References

  • Sharma, P. R., Sushila, C., & Makinde, O. D. (2017). MHD slip flow and heat transfer over an exponentially stretching permeable sheet embedded in a porous medium with heat source. Frontiers in Heat and Mass Transfer, 9, 1-7. DOI: 10.5098/hmt.9.18.
  • Mahdi, R., Hussein, A. M., Kannan, M. M., & Nawaf. S. (2015). Review of Convection heat transfer and fluid flow in porous media with nanofluid. Renewable and Sustainable Energy Reviews, 41, 715-734. Doi:10.1016/j.rser.2014.08.040.
  • Rashidi, M. M., Ganesh, V. N., Abdul Hakeem, A. K., & Ganga, B. (2014). Buoyancy effect on MHD flow of Nanofluid over a Stretching sheet in the presence of thermal Radiation. Journal of Molecular Liquids, 198, 234-238. https://doi.org/10.1016/j.molliq.2014.06.037.
  • Mustafa, M., Hayat, T., Pop, I., Asghar, S., & Obaidat, S. (2011). Stagnation-point flow of a nanofluid towards a stretching sheet. International Journal of Heat Mass Transfer, 54, 5588-5594.
  • Vajravelu, K. (2001). Viscous flow over a nonlinearly stretching sheet. Applications in Mathematical Computations, 184, 864-873.
  • Miklavcic, M., & Wang, C. Y. (2006). Viscous flow due to a shrinking sheet. Quarterly Applied Mathematics, 64, 283-290.
  • Uka, U. A., Amos, E., & Nwaigwe, C. (2022). Chemical Reaction and Thermal Radiation Effects on Magnetohydrodynamic Nanofluid past an Exponentially Stretching Sheet. Theoretical Mathematics & Applications, 12(2), 1-19. https://doi.org/10.47260/tma/1221.
  • Devi, S. A., & Ganga, B. (2009). Effects of viscous and joules dissipation on MHD flow, heat and mass transfer past a stretching porous surface embedded in a porous medium. Nonlinear Analysis, Modelling and Control, 14(3), 303-314.
  • Raju, C. S. K., Sandeep, N., Sugunamma, V., Babu, M. J., & Reddy, J. R. (2016). Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface. Engineering Science and Technology, an International Journal, 19(1), 45-52.
  • Mansour, M. A., El-Hakiem, M. A., & Kabeir, S. M. (2000). Heat and mass transfer in magnetohydrodynamic flow of micropolar fluid on a circular cylinder with uniform heat and mass flux. Journal of Magnetism and Magnetic Materials, 220, 259-270.
  • Choi, S. U. S. & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with Nanoparticles. (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National lab.IL (United States).
  • Buongiorno, J. (2006). Convective transport in nanofluids. Journal of Heat Transfer, 128(3), 240-250.
  • Kuznetsov, A. V., & Nield, D. A. (2010). Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49(2), 243-247.
  • Sakiadios, B. C. (1961). Boundary layer behavior on continuous solid surfaces. American Institute of Chemical Engineers, 7, 26-28.
  • Gaffar, A. S., Prasad, R. V., & Reddy, K. E. (2017). Mixed Convection boundary layer flows of a non-Newtonian Jeffrey’s fluid from non-isothermal wedge. Ain Shams Engineering Journal, 8(2), 145-162.
  • Tamayol, A., Hooman, K., & Bahrami, M. (2010). Thermal analysis of flow in a porous medium over a permeable stretching wall. Transportation in Porous media. 85(3), 661-676.
  • Khani, F., Farmany, A., Raji, A. M., Aziz, A., & Samadi, F. (2009). Analytic solution for heat transfer of a third-grade viscoelastic fluid in non-Darcy porous media with thermophysical effects. Communications in Nonlinear Science and Numerical Simulation, 14(11), 3867-3878.
  • Hayat, T. A. M., Safdar, A., & Hendi, A. A. (2012). Unsteady three-dimensional flow of couple strain fluid over a stretching surface with chemical reaction. Nonlinear Analysis: Modelling and Control, 17(1), 47-59.
  • Awucha, U. U., & Okechukwu, A. (2022). Soret dissipation effect on heat and mass transmission of non-Newtonian Casson radiative nanofluid flow with Lorentz drag and Rosseland Radiation. Journal of Pure & Applied Sciences, 21(2), 120-127. https://doi.org/10.51984/jopas.v21i2.2059.
  • Venkateswarlu, M., & Padma, P. (2015). Unsteady MHD convective heat and mass tranfer in a boundary layer flow past a vertical permeable plate with thermal radiation and chemical reaction. International Conference on Computational Heat and Mass Transfer-2015, Procedia Engineering, 127, 791-799.
  • Pudhari, S. (2018). Hall current effect on the MHD flow of Newtonian fluid through a porous medium. International Journal of Applkied Engineering Research, 13(7), 4637-4651.
  • Bagus, J., Basuki, W., & Chairul, I. (2018). The effect of heat generation on mixed convection flow in nano fluids over a horizontal circular cylinder. Journal of Physics: Conference Series 1008, 012001. https://doi.org:10.1088/1742-6596/1008/1/012001.
  • Bestman, A. R. (1990). The boundary layer flow past a semi-infinite heated porous for two-component plasma. Astrophysics and Space Science, 173, 93-100.
Year 2023, Volume: 6 Issue: 1, 13 - 27, 26.07.2023

Abstract

Project Number

None

References

  • Sharma, P. R., Sushila, C., & Makinde, O. D. (2017). MHD slip flow and heat transfer over an exponentially stretching permeable sheet embedded in a porous medium with heat source. Frontiers in Heat and Mass Transfer, 9, 1-7. DOI: 10.5098/hmt.9.18.
  • Mahdi, R., Hussein, A. M., Kannan, M. M., & Nawaf. S. (2015). Review of Convection heat transfer and fluid flow in porous media with nanofluid. Renewable and Sustainable Energy Reviews, 41, 715-734. Doi:10.1016/j.rser.2014.08.040.
  • Rashidi, M. M., Ganesh, V. N., Abdul Hakeem, A. K., & Ganga, B. (2014). Buoyancy effect on MHD flow of Nanofluid over a Stretching sheet in the presence of thermal Radiation. Journal of Molecular Liquids, 198, 234-238. https://doi.org/10.1016/j.molliq.2014.06.037.
  • Mustafa, M., Hayat, T., Pop, I., Asghar, S., & Obaidat, S. (2011). Stagnation-point flow of a nanofluid towards a stretching sheet. International Journal of Heat Mass Transfer, 54, 5588-5594.
  • Vajravelu, K. (2001). Viscous flow over a nonlinearly stretching sheet. Applications in Mathematical Computations, 184, 864-873.
  • Miklavcic, M., & Wang, C. Y. (2006). Viscous flow due to a shrinking sheet. Quarterly Applied Mathematics, 64, 283-290.
  • Uka, U. A., Amos, E., & Nwaigwe, C. (2022). Chemical Reaction and Thermal Radiation Effects on Magnetohydrodynamic Nanofluid past an Exponentially Stretching Sheet. Theoretical Mathematics & Applications, 12(2), 1-19. https://doi.org/10.47260/tma/1221.
  • Devi, S. A., & Ganga, B. (2009). Effects of viscous and joules dissipation on MHD flow, heat and mass transfer past a stretching porous surface embedded in a porous medium. Nonlinear Analysis, Modelling and Control, 14(3), 303-314.
  • Raju, C. S. K., Sandeep, N., Sugunamma, V., Babu, M. J., & Reddy, J. R. (2016). Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface. Engineering Science and Technology, an International Journal, 19(1), 45-52.
  • Mansour, M. A., El-Hakiem, M. A., & Kabeir, S. M. (2000). Heat and mass transfer in magnetohydrodynamic flow of micropolar fluid on a circular cylinder with uniform heat and mass flux. Journal of Magnetism and Magnetic Materials, 220, 259-270.
  • Choi, S. U. S. & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with Nanoparticles. (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National lab.IL (United States).
  • Buongiorno, J. (2006). Convective transport in nanofluids. Journal of Heat Transfer, 128(3), 240-250.
  • Kuznetsov, A. V., & Nield, D. A. (2010). Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49(2), 243-247.
  • Sakiadios, B. C. (1961). Boundary layer behavior on continuous solid surfaces. American Institute of Chemical Engineers, 7, 26-28.
  • Gaffar, A. S., Prasad, R. V., & Reddy, K. E. (2017). Mixed Convection boundary layer flows of a non-Newtonian Jeffrey’s fluid from non-isothermal wedge. Ain Shams Engineering Journal, 8(2), 145-162.
  • Tamayol, A., Hooman, K., & Bahrami, M. (2010). Thermal analysis of flow in a porous medium over a permeable stretching wall. Transportation in Porous media. 85(3), 661-676.
  • Khani, F., Farmany, A., Raji, A. M., Aziz, A., & Samadi, F. (2009). Analytic solution for heat transfer of a third-grade viscoelastic fluid in non-Darcy porous media with thermophysical effects. Communications in Nonlinear Science and Numerical Simulation, 14(11), 3867-3878.
  • Hayat, T. A. M., Safdar, A., & Hendi, A. A. (2012). Unsteady three-dimensional flow of couple strain fluid over a stretching surface with chemical reaction. Nonlinear Analysis: Modelling and Control, 17(1), 47-59.
  • Awucha, U. U., & Okechukwu, A. (2022). Soret dissipation effect on heat and mass transmission of non-Newtonian Casson radiative nanofluid flow with Lorentz drag and Rosseland Radiation. Journal of Pure & Applied Sciences, 21(2), 120-127. https://doi.org/10.51984/jopas.v21i2.2059.
  • Venkateswarlu, M., & Padma, P. (2015). Unsteady MHD convective heat and mass tranfer in a boundary layer flow past a vertical permeable plate with thermal radiation and chemical reaction. International Conference on Computational Heat and Mass Transfer-2015, Procedia Engineering, 127, 791-799.
  • Pudhari, S. (2018). Hall current effect on the MHD flow of Newtonian fluid through a porous medium. International Journal of Applkied Engineering Research, 13(7), 4637-4651.
  • Bagus, J., Basuki, W., & Chairul, I. (2018). The effect of heat generation on mixed convection flow in nano fluids over a horizontal circular cylinder. Journal of Physics: Conference Series 1008, 012001. https://doi.org:10.1088/1742-6596/1008/1/012001.
  • Bestman, A. R. (1990). The boundary layer flow past a semi-infinite heated porous for two-component plasma. Astrophysics and Space Science, 173, 93-100.
There are 23 citations in total.

Details

Primary Language English
Journal Section Research Papers
Authors

Uchenna Uka 0000-0003-4177-3213

Dıgbo Idıka 0000-0003-4731-5926

Edwin Esekhaigbe 0009-0007-5337-0856

Project Number None
Publication Date July 26, 2023
Submission Date April 26, 2023
Acceptance Date July 13, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Uka, U., Idıka, D., & Esekhaigbe, E. (2023). MHD Nanofluidic Flow Past a Nonlinear Exponentially Stretched Plate with Enhanced Thermal Source/Sink and Thermo-migration. Journal of Investigations on Engineering and Technology, 6(1), 13-27.