Research Article
BibTex RIS Cite

Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları

Year 2023, , 341 - 351, 01.03.2023
https://doi.org/10.21597/jist.1201844

Abstract

Bu çalışmada Arap zamkı, karboksimetil selüloz ve maltodekstrin su içinde yağ bazlı emülsiyon sistemlerinde emülgatör olarak kullanılmıştır. Emülgatör olarak seçilen karbonhidratlardaki özel yapılar FTIR spektroskopisi ile araştırılmıştır. Emülsiyonlarda Arap zamkının mevcudiyeti üstün emülsiyon aktivitesi ve emülsiyon stabilitesi ile sonuçlanmıştır. Stabilite indeks için elde edilen görüntülerde yağ damlacıklarının maltodekstrinin emülgatör olarak kullanıldığı emülsiyonlardan kolay bir şekilde ayrıldığı tespit edilmiştir. Ancak Arap zamkı ve karboksimetil selüloz içeren emülsiyonlarda net bir yağ ayrımı gözlemlenmemiştir. Stabilite katsayısı, Arap zamkı (0.80) kullanılarak hazırlanan emülsiyonlarda karboksimetil selüloz (0.63) ve maltodekstrin (0.50) ile hazırlanan örneklerden daha yüksek olduğu belirlenmiştir. Stabilite ile ters orantılı olan santrifüj çökme oranı Arap zamkını, karboksimetil selülozü ve maltodekstrini ihtiva eden örneklerde sırasıyla %10.65, 16.15 ve 23.55 bulunmuştur.

References

  • Aghajanzadeh, S., Ziaiifar, A.M. & Kashaninejad, M. (2017). Influence of Thermal Treatment, Homogenization and Xanthan Gum on Physicochemical Properties of Watermelon Juice: A Response Surface Approach. LWT-Food Science and Technology, 85, 66–74. https://doi.org/10.1016/j.lwt.2017.07.007
  • Bai, L., Huan, S., Gu, J. & McClements, D. J. (2016). Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids, 61, 703–711. https://doi.org/10.1016/j.foodhyd.2016.06.035
  • Bai, L., Huan, S., Li, Z. & McClements, D. J. (2017). Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum Arabic, beet pectin, and corn fiber gum. Food Hydrocolloids, 66, 144–153. https://doi.org/10.1016/j.foodhyd.2016.12.019
  • Bashir, M. & Haripriya, S. (2016). Assessment of Physical and Structural Characteristics of Almond Gum. International Journal of Biological Macromolecules, 93, 476–482. https://doi.org/10.1016/j.ijbiomac.2016.09.009
  • Bouyer, E., Mekhloufi, G., Rosilio, V., Grossiord, JL. & Agnely, F. (2012). Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? International Journal of Pharmaceutics, 436(1–2), 359–378. https://doi.org/10.1016/j.ijpharm.2012.06.052
  • Cserháti, T., Forgács, E. & Oros, G. (2002). Biological activity and environmental impact of anionic surfactants. Environment International, 28(5), 337–348. https://doi.org/10.1016/S0160-4120(02)00032-6
  • Dammak, I., Sobral, P. J. D. A., Aquino, A., Neves, M. A. D. & Conte‐Junior, C. A. (2020). Nanoemulsions: Using Emulsifiers from Natural Sources Replacing Synthetic Ones—A Review. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2721–2746. https://doi.org/10.1111/1541-4337.12606
  • Dickinson, E. (2003). Hydrocolloids at Interfaces and the Influence on the Properties of Dispersed Systems. Food Hydrocolloids, 17(1), 25–39. https://doi.org/10.1016/S0268-005X(01)00120-5
  • Kang, Y. R., Lee, Y. K., Kim, Y. J. & Chang, Y. H. (2019). Characterization and Storage Stability of Chlorophylls Microencapsulated in Different Combination of Gum Arabic and Maltodextrin. Food Chemistry, 272, 337–346. https://doi.org/10.1016/j.foodchem.2018.08.063
  • Kim, W., Wang, Y. & Selomulya, C. (2020). Dairy and Plant Proteins as Natural Food Emulsifiers. Trends in Food Science & Technology, 105, 261–272. https://doi.org/10.1016/j.tifs.2020.09.012
  • Komaiko, J., Sastrosubroto, A. & McClements, D. J. (2016). Encapsulation of ω-3 Fatty Acids in Nanoemulsion-Based Delivery Systems Fabricated from Natural Emulsifiers: Sunflower Phospholipids. Food Chemistry, 203, 331–339. https://doi.org/10.1016/j.foodchem.2016.02.080
  • Kralova, I. & Sjöblom, J. (2009). Surfactants Used in Food Industry: A Review. Journal of Dispersion Science and Technology, 30(9), 1363–1383. https://doi.org/10.1080/01932690902735561
  • Krstonošić, V., Dokić, L., Dokić, P. & Dapčević, T. (2009). Effects of Xanthan Gum on Physicochemical Properties and Stability of Corn Oil-in-Water Emulsions Stabilized by Polyoxyethylene (20) Sorbitan Monooleate. Food Hydrocolloids, 23(8), 2212–2218. https://doi.org/10.1016/j.foodhyd.2009.05.003
  • Lam, R. S. H. & Nickerson, M. T. (2013). Food Proteins: A Review on Their Emulsifying Properties Using a Structure–Function Approach. Food Chemistry, 141(2), 975–984. https://doi.org/10.1016/j.foodchem.2013.04.038
  • Lee, H. W., Lu, Y., Zhang, Y., Fu, C. & Huang, D., (2021). Physicochemical and Functional Properties of Red Lentil Protein Isolates from Three Origins at Different pH. Food Chemistry, 358, 129749. https://doi.org/10.1016/j.foodchem.2021.129749
  • Lei, M., Jiang, F. C., Cai, J., Hu, S., Zhou, R., Liu, G., Wang, Y. H., Wang, H.B., He, J. R. & Xiong, X.G. (2018). Facile Microencapsulation of Olive Oil in Porous Starch Granules: Fabrication, Characterization, and Oxidative Stability. International Journal of Biological Macromolecules, 111, 755–761. https://doi.org/10.1016/j.ijbiomac.2018.01.051
  • Leroux, J., Langendorff, V., Schick, G., Vaishnav, V. & Mazoyer, J. (2003). Emulsion Stabilizing Properties of Pectin. Food Hydrocolloids, 17(4), 455–462. https://doi.org/10.1016/S0268-005X(03)00027-4
  • Li, K., Fu, L., Zhao, Y. Y., Xue, S. W., Wang, P., Xu, X. L. & Bai, Y. H. (2020). Use of High-Intensity Ultrasound to Improve Emulsifying Properties of Chicken Myofibrillar Protein and Enhance the Rheological Properties and Stability of the Emulsion. Food Hydrocolloids, 98, 105275. https://doi.org/10.1016/j.foodhyd.2019.105275
  • Li, Q., Wang, Z., Dai, C., Wang, Y., Chen, W., Ju, X., Yuan, J. & He, R. (2019). Physical Stability and Microstructure of Rapeseed Protein Isolate/Gum Arabic Stabilized Emulsions at Alkaline pH. Food Hydrocolloids, 88, 50–57. https://doi.org/10.1016/j.foodhyd.2018.09.020
  • Liu, Y., Wei, Z. C., Deng, Y. Y., Dong, H., Zhang, Y., Tang, X. J. & Zhang, M. W. (2020). Comparison of the effects of different food-grade emulsifiers on the properties and stability of a casein-maltodextrin-soybean oil compound emulsion. Molecules, 25(3), 458. https://doi.org/10.3390/molecules25030458
  • Liwarska-Bizukojc, E., Miksch, K., Malachowska-Jutsz, A. & Kalka, J. (2005). Acute Toxicity and Genotoxicity of Five Selected Anionic and Nonionic Surfactants. Chemosphere, 58(9), 1249–1253. https://doi.org/10.1016/j.chemosphere.2004.10.031
  • McClements, D. J. (2007). Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Critical Reviews in Food Science and Nutrition, 47(7), 611–649. https://doi.org/10.1080/10408390701289292
  • McClements, D. J. (2014). Nanoparticle-and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds. CRC press. McClements, D. J. (2015). Emulsion Stability. In Food emulsions. CRC Press. McClements D. J., Bai, L. & Chung, C., (2017). Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. Annual Review of Food Science and Technology, 8(1), 205–236. https://doi.org/10.1146/annurev-food-030216-030154
  • Qu, W., Zhang, X., Chen, W., Wang, Z., He, R., & Ma, H. (2018). Effects of ultrasonic and graft treatments on grafting degree, structure, functionality, and digestibility of rapeseed protein isolate-dextran conjugates. Ultrasonics Sonochemistry, 42, 250-259. https://doi.org/10.1016/j.ultsonch.2017.11.021
  • Raikos, V., Duthie, G. & Ranawana, V. (2017). Comparing the Efficiency of Different Food-Grade Emulsifiers to Form and Stabilise Orange Oil-in-Water Beverage Emulsions: Influence of Emulsifier Concentration and Storage Time. International Journal of Food Science & Technology, 52(2), 348–358. https://doi.org/10.1111/ijfs.13286
  • Randall, R. C., Phillips, G. O. & Williams, P. A. (1988). The role of the Proteinaceous Component on the Emulsifying Properties of Gum Arabic. Food Hydrocolloids, 2(2), 131–140. https://doi.org/10.1016/S0268-005X(88)80011-0
  • Shu, G., Khalid, N., Chen, Z., Neves, M. A., Barrow, C. J. & Nakajima, M. (2018). Formulation and Characterization of Astaxanthin-Enriched Nanoemulsions Stabilized Using Ginseng Saponins as Natural Emulsifiers. Food Chemistry, 255, 67–74. https://doi.org/10.1016/j.foodchem.2018.02.062
  • Sun, J., Liu, T., Mu, Y., Jing, H., Obadi, M., & Xu, B. (2021). Enhancing the stabilization of β-carotene emulsion using ovalbumin-dextran conjugates as emulsifier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 126806. https://doi.org/10.1016/j.colsurfa.2021.126806
  • Vlachy, N., Touraud, D., Heilmann, J. & Kunz, W. (2009). Determining the Cytotoxicity of Catanionic Surfactant Mixtures on HeLa cells. Colloids and Surfaces B: Biointerfaces, 70(2), 278–280. https://doi.org/10.1016/j.colsurfb.2008.12.038
  • Wan, Y., Wang, R., Feng, W., Chen, Z. & Wang, T. (2021). High Internal Phase Pickering Emulsions Stabilized by Co-Assembled Rice Proteins and Carboxymethyl Cellulose for Food-Grade 3D Printing. Carbohydrate Polymers, 273, 118586. https://doi.org/10.1016/j.carbpol.2021.118586
  • Wang, W., Du, G., Li, C., Zhang, H., Long, Y. & Ni, Y. (2016). Preparation of Cellulose Nanocrystals from Asparagus (Asparagus officinalis L.) and Their Applications to Palm Oil/Water Pickering Emulsion. Carbohydrate Polymers, 151, 1–8. https://doi.org/10.1016/j.carbpol.2016.05.052
  • Zhu, F. (2019). Starch Based Pickering Emulsions: Fabrication, Properties, and Applications. Trends in Food Science & Technology, 85, 129–137. https://doi.org/10.1016/j.tifs.2019.01.012
  • Zou, W., Tang, S., Li, Q., Hu, G., Liu, L., Jin, Y. & Cai, Z. (2020). Addition of Cationic Guar-Gum and Oleic Acid Improved the Stability of Plasma Emulsions Prepared with Enzymatically Hydrolyzed Egg Yolk. Food Hydrocolloids, 105, 105827. https://doi.org/10.1016/j.foodhyd.2020.105827

Stability Behaviors of Oil-in-Water Emulsion Systems Stabilized by Gum Arabic, Carboxymethyl Cellulose and Maltodextrin

Year 2023, , 341 - 351, 01.03.2023
https://doi.org/10.21597/jist.1201844

Abstract

In this study, gum Arabic, carboxymethyl cellulose and maltodextrin were used as emulsifiers in oil-in-water emulsion systems. Special structures in the carbohydrates selected as emulsifiers were investigated by FTIR spectroscopy. The presence of gum Arabic in emulsions resulted in superior emulsion activity and emulsion stability. In the images obtained for the stability index, the oil droplets were easily separated from the emulsions in which maltodextrin was used as an emulsifier. However, no clear oil separation was observed in emulsions containing gum Arabic and carboxymethyl cellulose. The stability coefficient was higher in emulsions prepared using gum Arabic (0.80) compared to carboxymethyl cellulose (0.63) and maltodextrin (0.50) ones. Centrifugal precipitation rate, which is inversely proportional to stability, was found as 10.65, 16.15, and 23.55% in the samples containing gum Arabic, carboxymethyl cellulose and maltodextrin, respectively.

References

  • Aghajanzadeh, S., Ziaiifar, A.M. & Kashaninejad, M. (2017). Influence of Thermal Treatment, Homogenization and Xanthan Gum on Physicochemical Properties of Watermelon Juice: A Response Surface Approach. LWT-Food Science and Technology, 85, 66–74. https://doi.org/10.1016/j.lwt.2017.07.007
  • Bai, L., Huan, S., Gu, J. & McClements, D. J. (2016). Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids, 61, 703–711. https://doi.org/10.1016/j.foodhyd.2016.06.035
  • Bai, L., Huan, S., Li, Z. & McClements, D. J. (2017). Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum Arabic, beet pectin, and corn fiber gum. Food Hydrocolloids, 66, 144–153. https://doi.org/10.1016/j.foodhyd.2016.12.019
  • Bashir, M. & Haripriya, S. (2016). Assessment of Physical and Structural Characteristics of Almond Gum. International Journal of Biological Macromolecules, 93, 476–482. https://doi.org/10.1016/j.ijbiomac.2016.09.009
  • Bouyer, E., Mekhloufi, G., Rosilio, V., Grossiord, JL. & Agnely, F. (2012). Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? International Journal of Pharmaceutics, 436(1–2), 359–378. https://doi.org/10.1016/j.ijpharm.2012.06.052
  • Cserháti, T., Forgács, E. & Oros, G. (2002). Biological activity and environmental impact of anionic surfactants. Environment International, 28(5), 337–348. https://doi.org/10.1016/S0160-4120(02)00032-6
  • Dammak, I., Sobral, P. J. D. A., Aquino, A., Neves, M. A. D. & Conte‐Junior, C. A. (2020). Nanoemulsions: Using Emulsifiers from Natural Sources Replacing Synthetic Ones—A Review. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2721–2746. https://doi.org/10.1111/1541-4337.12606
  • Dickinson, E. (2003). Hydrocolloids at Interfaces and the Influence on the Properties of Dispersed Systems. Food Hydrocolloids, 17(1), 25–39. https://doi.org/10.1016/S0268-005X(01)00120-5
  • Kang, Y. R., Lee, Y. K., Kim, Y. J. & Chang, Y. H. (2019). Characterization and Storage Stability of Chlorophylls Microencapsulated in Different Combination of Gum Arabic and Maltodextrin. Food Chemistry, 272, 337–346. https://doi.org/10.1016/j.foodchem.2018.08.063
  • Kim, W., Wang, Y. & Selomulya, C. (2020). Dairy and Plant Proteins as Natural Food Emulsifiers. Trends in Food Science & Technology, 105, 261–272. https://doi.org/10.1016/j.tifs.2020.09.012
  • Komaiko, J., Sastrosubroto, A. & McClements, D. J. (2016). Encapsulation of ω-3 Fatty Acids in Nanoemulsion-Based Delivery Systems Fabricated from Natural Emulsifiers: Sunflower Phospholipids. Food Chemistry, 203, 331–339. https://doi.org/10.1016/j.foodchem.2016.02.080
  • Kralova, I. & Sjöblom, J. (2009). Surfactants Used in Food Industry: A Review. Journal of Dispersion Science and Technology, 30(9), 1363–1383. https://doi.org/10.1080/01932690902735561
  • Krstonošić, V., Dokić, L., Dokić, P. & Dapčević, T. (2009). Effects of Xanthan Gum on Physicochemical Properties and Stability of Corn Oil-in-Water Emulsions Stabilized by Polyoxyethylene (20) Sorbitan Monooleate. Food Hydrocolloids, 23(8), 2212–2218. https://doi.org/10.1016/j.foodhyd.2009.05.003
  • Lam, R. S. H. & Nickerson, M. T. (2013). Food Proteins: A Review on Their Emulsifying Properties Using a Structure–Function Approach. Food Chemistry, 141(2), 975–984. https://doi.org/10.1016/j.foodchem.2013.04.038
  • Lee, H. W., Lu, Y., Zhang, Y., Fu, C. & Huang, D., (2021). Physicochemical and Functional Properties of Red Lentil Protein Isolates from Three Origins at Different pH. Food Chemistry, 358, 129749. https://doi.org/10.1016/j.foodchem.2021.129749
  • Lei, M., Jiang, F. C., Cai, J., Hu, S., Zhou, R., Liu, G., Wang, Y. H., Wang, H.B., He, J. R. & Xiong, X.G. (2018). Facile Microencapsulation of Olive Oil in Porous Starch Granules: Fabrication, Characterization, and Oxidative Stability. International Journal of Biological Macromolecules, 111, 755–761. https://doi.org/10.1016/j.ijbiomac.2018.01.051
  • Leroux, J., Langendorff, V., Schick, G., Vaishnav, V. & Mazoyer, J. (2003). Emulsion Stabilizing Properties of Pectin. Food Hydrocolloids, 17(4), 455–462. https://doi.org/10.1016/S0268-005X(03)00027-4
  • Li, K., Fu, L., Zhao, Y. Y., Xue, S. W., Wang, P., Xu, X. L. & Bai, Y. H. (2020). Use of High-Intensity Ultrasound to Improve Emulsifying Properties of Chicken Myofibrillar Protein and Enhance the Rheological Properties and Stability of the Emulsion. Food Hydrocolloids, 98, 105275. https://doi.org/10.1016/j.foodhyd.2019.105275
  • Li, Q., Wang, Z., Dai, C., Wang, Y., Chen, W., Ju, X., Yuan, J. & He, R. (2019). Physical Stability and Microstructure of Rapeseed Protein Isolate/Gum Arabic Stabilized Emulsions at Alkaline pH. Food Hydrocolloids, 88, 50–57. https://doi.org/10.1016/j.foodhyd.2018.09.020
  • Liu, Y., Wei, Z. C., Deng, Y. Y., Dong, H., Zhang, Y., Tang, X. J. & Zhang, M. W. (2020). Comparison of the effects of different food-grade emulsifiers on the properties and stability of a casein-maltodextrin-soybean oil compound emulsion. Molecules, 25(3), 458. https://doi.org/10.3390/molecules25030458
  • Liwarska-Bizukojc, E., Miksch, K., Malachowska-Jutsz, A. & Kalka, J. (2005). Acute Toxicity and Genotoxicity of Five Selected Anionic and Nonionic Surfactants. Chemosphere, 58(9), 1249–1253. https://doi.org/10.1016/j.chemosphere.2004.10.031
  • McClements, D. J. (2007). Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Critical Reviews in Food Science and Nutrition, 47(7), 611–649. https://doi.org/10.1080/10408390701289292
  • McClements, D. J. (2014). Nanoparticle-and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds. CRC press. McClements, D. J. (2015). Emulsion Stability. In Food emulsions. CRC Press. McClements D. J., Bai, L. & Chung, C., (2017). Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. Annual Review of Food Science and Technology, 8(1), 205–236. https://doi.org/10.1146/annurev-food-030216-030154
  • Qu, W., Zhang, X., Chen, W., Wang, Z., He, R., & Ma, H. (2018). Effects of ultrasonic and graft treatments on grafting degree, structure, functionality, and digestibility of rapeseed protein isolate-dextran conjugates. Ultrasonics Sonochemistry, 42, 250-259. https://doi.org/10.1016/j.ultsonch.2017.11.021
  • Raikos, V., Duthie, G. & Ranawana, V. (2017). Comparing the Efficiency of Different Food-Grade Emulsifiers to Form and Stabilise Orange Oil-in-Water Beverage Emulsions: Influence of Emulsifier Concentration and Storage Time. International Journal of Food Science & Technology, 52(2), 348–358. https://doi.org/10.1111/ijfs.13286
  • Randall, R. C., Phillips, G. O. & Williams, P. A. (1988). The role of the Proteinaceous Component on the Emulsifying Properties of Gum Arabic. Food Hydrocolloids, 2(2), 131–140. https://doi.org/10.1016/S0268-005X(88)80011-0
  • Shu, G., Khalid, N., Chen, Z., Neves, M. A., Barrow, C. J. & Nakajima, M. (2018). Formulation and Characterization of Astaxanthin-Enriched Nanoemulsions Stabilized Using Ginseng Saponins as Natural Emulsifiers. Food Chemistry, 255, 67–74. https://doi.org/10.1016/j.foodchem.2018.02.062
  • Sun, J., Liu, T., Mu, Y., Jing, H., Obadi, M., & Xu, B. (2021). Enhancing the stabilization of β-carotene emulsion using ovalbumin-dextran conjugates as emulsifier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 126806. https://doi.org/10.1016/j.colsurfa.2021.126806
  • Vlachy, N., Touraud, D., Heilmann, J. & Kunz, W. (2009). Determining the Cytotoxicity of Catanionic Surfactant Mixtures on HeLa cells. Colloids and Surfaces B: Biointerfaces, 70(2), 278–280. https://doi.org/10.1016/j.colsurfb.2008.12.038
  • Wan, Y., Wang, R., Feng, W., Chen, Z. & Wang, T. (2021). High Internal Phase Pickering Emulsions Stabilized by Co-Assembled Rice Proteins and Carboxymethyl Cellulose for Food-Grade 3D Printing. Carbohydrate Polymers, 273, 118586. https://doi.org/10.1016/j.carbpol.2021.118586
  • Wang, W., Du, G., Li, C., Zhang, H., Long, Y. & Ni, Y. (2016). Preparation of Cellulose Nanocrystals from Asparagus (Asparagus officinalis L.) and Their Applications to Palm Oil/Water Pickering Emulsion. Carbohydrate Polymers, 151, 1–8. https://doi.org/10.1016/j.carbpol.2016.05.052
  • Zhu, F. (2019). Starch Based Pickering Emulsions: Fabrication, Properties, and Applications. Trends in Food Science & Technology, 85, 129–137. https://doi.org/10.1016/j.tifs.2019.01.012
  • Zou, W., Tang, S., Li, Q., Hu, G., Liu, L., Jin, Y. & Cai, Z. (2020). Addition of Cationic Guar-Gum and Oleic Acid Improved the Stability of Plasma Emulsions Prepared with Enzymatically Hydrolyzed Egg Yolk. Food Hydrocolloids, 105, 105827. https://doi.org/10.1016/j.foodhyd.2020.105827
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Gıda Mühendisliği / Food Engineering
Authors

Bülent Başyiğit 0000-0002-6617-1836

Publication Date March 1, 2023
Submission Date November 9, 2022
Acceptance Date January 2, 2023
Published in Issue Year 2023

Cite

APA Başyiğit, B. (2023). Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları. Journal of the Institute of Science and Technology, 13(1), 341-351. https://doi.org/10.21597/jist.1201844
AMA Başyiğit B. Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları. Iğdır Üniv. Fen Bil Enst. Der. March 2023;13(1):341-351. doi:10.21597/jist.1201844
Chicago Başyiğit, Bülent. “Arap Zamkı, Karboksimetil Selüloz Ve Maltodekstrin Ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları”. Journal of the Institute of Science and Technology 13, no. 1 (March 2023): 341-51. https://doi.org/10.21597/jist.1201844.
EndNote Başyiğit B (March 1, 2023) Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları. Journal of the Institute of Science and Technology 13 1 341–351.
IEEE B. Başyiğit, “Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 1, pp. 341–351, 2023, doi: 10.21597/jist.1201844.
ISNAD Başyiğit, Bülent. “Arap Zamkı, Karboksimetil Selüloz Ve Maltodekstrin Ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları”. Journal of the Institute of Science and Technology 13/1 (March 2023), 341-351. https://doi.org/10.21597/jist.1201844.
JAMA Başyiğit B. Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:341–351.
MLA Başyiğit, Bülent. “Arap Zamkı, Karboksimetil Selüloz Ve Maltodekstrin Ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları”. Journal of the Institute of Science and Technology, vol. 13, no. 1, 2023, pp. 341-5, doi:10.21597/jist.1201844.
Vancouver Başyiğit B. Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(1):341-5.