Bu çalışmada Arap zamkı, karboksimetil selüloz ve maltodekstrin su içinde yağ bazlı emülsiyon sistemlerinde emülgatör olarak kullanılmıştır. Emülgatör olarak seçilen karbonhidratlardaki özel yapılar FTIR spektroskopisi ile araştırılmıştır. Emülsiyonlarda Arap zamkının mevcudiyeti üstün emülsiyon aktivitesi ve emülsiyon stabilitesi ile sonuçlanmıştır. Stabilite indeks için elde edilen görüntülerde yağ damlacıklarının maltodekstrinin emülgatör olarak kullanıldığı emülsiyonlardan kolay bir şekilde ayrıldığı tespit edilmiştir. Ancak Arap zamkı ve karboksimetil selüloz içeren emülsiyonlarda net bir yağ ayrımı gözlemlenmemiştir. Stabilite katsayısı, Arap zamkı (0.80) kullanılarak hazırlanan emülsiyonlarda karboksimetil selüloz (0.63) ve maltodekstrin (0.50) ile hazırlanan örneklerden daha yüksek olduğu belirlenmiştir. Stabilite ile ters orantılı olan santrifüj çökme oranı Arap zamkını, karboksimetil selülozü ve maltodekstrini ihtiva eden örneklerde sırasıyla %10.65, 16.15 ve 23.55 bulunmuştur.
Aghajanzadeh, S., Ziaiifar, A.M. & Kashaninejad, M. (2017). Influence of Thermal Treatment, Homogenization and Xanthan Gum on Physicochemical Properties of Watermelon Juice: A Response Surface Approach. LWT-Food Science and Technology, 85, 66–74. https://doi.org/10.1016/j.lwt.2017.07.007
Bai, L., Huan, S., Gu, J. & McClements, D. J. (2016). Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids, 61, 703–711. https://doi.org/10.1016/j.foodhyd.2016.06.035
Bai, L., Huan, S., Li, Z. & McClements, D. J. (2017). Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum Arabic, beet pectin, and corn fiber gum. Food Hydrocolloids, 66, 144–153. https://doi.org/10.1016/j.foodhyd.2016.12.019
Bashir, M. & Haripriya, S. (2016). Assessment of Physical and Structural Characteristics of Almond Gum. International Journal of Biological Macromolecules, 93, 476–482. https://doi.org/10.1016/j.ijbiomac.2016.09.009
Bouyer, E., Mekhloufi, G., Rosilio, V., Grossiord, JL. & Agnely, F. (2012). Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? International Journal of Pharmaceutics, 436(1–2), 359–378. https://doi.org/10.1016/j.ijpharm.2012.06.052
Cserháti, T., Forgács, E. & Oros, G. (2002). Biological activity and environmental impact of anionic surfactants. Environment International, 28(5), 337–348. https://doi.org/10.1016/S0160-4120(02)00032-6
Dammak, I., Sobral, P. J. D. A., Aquino, A., Neves, M. A. D. & Conte‐Junior, C. A. (2020). Nanoemulsions: Using Emulsifiers from Natural Sources Replacing Synthetic Ones—A Review. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2721–2746. https://doi.org/10.1111/1541-4337.12606
Dickinson, E. (2003). Hydrocolloids at Interfaces and the Influence on the Properties of Dispersed Systems. Food Hydrocolloids, 17(1), 25–39. https://doi.org/10.1016/S0268-005X(01)00120-5
Kang, Y. R., Lee, Y. K., Kim, Y. J. & Chang, Y. H. (2019). Characterization and Storage Stability of Chlorophylls Microencapsulated in Different Combination of Gum Arabic and Maltodextrin. Food Chemistry, 272, 337–346. https://doi.org/10.1016/j.foodchem.2018.08.063
Kim, W., Wang, Y. & Selomulya, C. (2020). Dairy and Plant Proteins as Natural Food Emulsifiers. Trends in Food Science & Technology, 105, 261–272. https://doi.org/10.1016/j.tifs.2020.09.012
Komaiko, J., Sastrosubroto, A. & McClements, D. J. (2016). Encapsulation of ω-3 Fatty Acids in Nanoemulsion-Based Delivery Systems Fabricated from Natural Emulsifiers: Sunflower Phospholipids. Food Chemistry, 203, 331–339. https://doi.org/10.1016/j.foodchem.2016.02.080
Kralova, I. & Sjöblom, J. (2009). Surfactants Used in Food Industry: A Review. Journal of Dispersion Science and Technology, 30(9), 1363–1383. https://doi.org/10.1080/01932690902735561
Krstonošić, V., Dokić, L., Dokić, P. & Dapčević, T. (2009). Effects of Xanthan Gum on Physicochemical Properties and Stability of Corn Oil-in-Water Emulsions Stabilized by Polyoxyethylene (20) Sorbitan Monooleate. Food Hydrocolloids, 23(8), 2212–2218. https://doi.org/10.1016/j.foodhyd.2009.05.003
Lam, R. S. H. & Nickerson, M. T. (2013). Food Proteins: A Review on Their Emulsifying Properties Using a Structure–Function Approach. Food Chemistry, 141(2), 975–984. https://doi.org/10.1016/j.foodchem.2013.04.038
Lee, H. W., Lu, Y., Zhang, Y., Fu, C. & Huang, D., (2021). Physicochemical and Functional Properties of Red Lentil Protein Isolates from Three Origins at Different pH. Food Chemistry, 358, 129749. https://doi.org/10.1016/j.foodchem.2021.129749
Lei, M., Jiang, F. C., Cai, J., Hu, S., Zhou, R., Liu, G., Wang, Y. H., Wang, H.B., He, J. R. & Xiong, X.G. (2018). Facile Microencapsulation of Olive Oil in Porous Starch Granules: Fabrication, Characterization, and Oxidative Stability. International Journal of Biological Macromolecules, 111, 755–761. https://doi.org/10.1016/j.ijbiomac.2018.01.051
Leroux, J., Langendorff, V., Schick, G., Vaishnav, V. & Mazoyer, J. (2003). Emulsion Stabilizing Properties of Pectin. Food Hydrocolloids, 17(4), 455–462. https://doi.org/10.1016/S0268-005X(03)00027-4
Li, K., Fu, L., Zhao, Y. Y., Xue, S. W., Wang, P., Xu, X. L. & Bai, Y. H. (2020). Use of High-Intensity Ultrasound to Improve Emulsifying Properties of Chicken Myofibrillar Protein and Enhance the Rheological Properties and Stability of the Emulsion. Food Hydrocolloids, 98, 105275. https://doi.org/10.1016/j.foodhyd.2019.105275
Li, Q., Wang, Z., Dai, C., Wang, Y., Chen, W., Ju, X., Yuan, J. & He, R. (2019). Physical Stability and Microstructure of Rapeseed Protein Isolate/Gum Arabic Stabilized Emulsions at Alkaline pH. Food Hydrocolloids, 88, 50–57. https://doi.org/10.1016/j.foodhyd.2018.09.020
Liu, Y., Wei, Z. C., Deng, Y. Y., Dong, H., Zhang, Y., Tang, X. J. & Zhang, M. W. (2020). Comparison of the effects of different food-grade emulsifiers on the properties and stability of a casein-maltodextrin-soybean oil compound emulsion. Molecules, 25(3), 458. https://doi.org/10.3390/molecules25030458
Liwarska-Bizukojc, E., Miksch, K., Malachowska-Jutsz, A. & Kalka, J. (2005). Acute Toxicity and Genotoxicity of Five Selected Anionic and Nonionic Surfactants. Chemosphere, 58(9), 1249–1253. https://doi.org/10.1016/j.chemosphere.2004.10.031
McClements, D. J. (2007). Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Critical Reviews in Food Science and Nutrition, 47(7), 611–649. https://doi.org/10.1080/10408390701289292
McClements, D. J. (2014). Nanoparticle-and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds. CRC press.
McClements, D. J. (2015). Emulsion Stability. In Food emulsions. CRC Press.
McClements D. J., Bai, L. & Chung, C., (2017). Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. Annual Review of Food Science and Technology, 8(1), 205–236. https://doi.org/10.1146/annurev-food-030216-030154
Qu, W., Zhang, X., Chen, W., Wang, Z., He, R., & Ma, H. (2018). Effects of ultrasonic and graft treatments on grafting degree, structure, functionality, and digestibility of rapeseed protein isolate-dextran conjugates. Ultrasonics Sonochemistry, 42, 250-259. https://doi.org/10.1016/j.ultsonch.2017.11.021
Raikos, V., Duthie, G. & Ranawana, V. (2017). Comparing the Efficiency of Different Food-Grade Emulsifiers to Form and Stabilise Orange Oil-in-Water Beverage Emulsions: Influence of Emulsifier Concentration and Storage Time. International Journal of Food Science & Technology, 52(2), 348–358. https://doi.org/10.1111/ijfs.13286
Randall, R. C., Phillips, G. O. & Williams, P. A. (1988). The role of the Proteinaceous Component on the Emulsifying Properties of Gum Arabic. Food Hydrocolloids, 2(2), 131–140. https://doi.org/10.1016/S0268-005X(88)80011-0
Shu, G., Khalid, N., Chen, Z., Neves, M. A., Barrow, C. J. & Nakajima, M. (2018). Formulation and Characterization of Astaxanthin-Enriched Nanoemulsions Stabilized Using Ginseng Saponins as Natural Emulsifiers. Food Chemistry, 255, 67–74. https://doi.org/10.1016/j.foodchem.2018.02.062
Sun, J., Liu, T., Mu, Y., Jing, H., Obadi, M., & Xu, B. (2021). Enhancing the stabilization of β-carotene emulsion using ovalbumin-dextran conjugates as emulsifier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 126806. https://doi.org/10.1016/j.colsurfa.2021.126806
Vlachy, N., Touraud, D., Heilmann, J. & Kunz, W. (2009). Determining the Cytotoxicity of Catanionic Surfactant Mixtures on HeLa cells. Colloids and Surfaces B: Biointerfaces, 70(2), 278–280. https://doi.org/10.1016/j.colsurfb.2008.12.038
Wan, Y., Wang, R., Feng, W., Chen, Z. & Wang, T. (2021). High Internal Phase Pickering Emulsions Stabilized by Co-Assembled Rice Proteins and Carboxymethyl Cellulose for Food-Grade 3D Printing. Carbohydrate Polymers, 273, 118586. https://doi.org/10.1016/j.carbpol.2021.118586
Wang, W., Du, G., Li, C., Zhang, H., Long, Y. & Ni, Y. (2016). Preparation of Cellulose Nanocrystals from Asparagus (Asparagus officinalis L.) and Their Applications to Palm Oil/Water Pickering Emulsion. Carbohydrate Polymers, 151, 1–8. https://doi.org/10.1016/j.carbpol.2016.05.052
Zhu, F. (2019). Starch Based Pickering Emulsions: Fabrication, Properties, and Applications. Trends in Food Science & Technology, 85, 129–137. https://doi.org/10.1016/j.tifs.2019.01.012
Zou, W., Tang, S., Li, Q., Hu, G., Liu, L., Jin, Y. & Cai, Z. (2020). Addition of Cationic Guar-Gum and Oleic Acid Improved the Stability of Plasma Emulsions Prepared with Enzymatically Hydrolyzed Egg Yolk. Food Hydrocolloids, 105, 105827. https://doi.org/10.1016/j.foodhyd.2020.105827
Stability Behaviors of Oil-in-Water Emulsion Systems Stabilized by Gum Arabic, Carboxymethyl Cellulose and Maltodextrin
In this study, gum Arabic, carboxymethyl cellulose and maltodextrin were used as emulsifiers in oil-in-water emulsion systems. Special structures in the carbohydrates selected as emulsifiers were investigated by FTIR spectroscopy. The presence of gum Arabic in emulsions resulted in superior emulsion activity and emulsion stability. In the images obtained for the stability index, the oil droplets were easily separated from the emulsions in which maltodextrin was used as an emulsifier. However, no clear oil separation was observed in emulsions containing gum Arabic and carboxymethyl cellulose. The stability coefficient was higher in emulsions prepared using gum Arabic (0.80) compared to carboxymethyl cellulose (0.63) and maltodextrin (0.50) ones. Centrifugal precipitation rate, which is inversely proportional to stability, was found as 10.65, 16.15, and 23.55% in the samples containing gum Arabic, carboxymethyl cellulose and maltodextrin, respectively.
Aghajanzadeh, S., Ziaiifar, A.M. & Kashaninejad, M. (2017). Influence of Thermal Treatment, Homogenization and Xanthan Gum on Physicochemical Properties of Watermelon Juice: A Response Surface Approach. LWT-Food Science and Technology, 85, 66–74. https://doi.org/10.1016/j.lwt.2017.07.007
Bai, L., Huan, S., Gu, J. & McClements, D. J. (2016). Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids, 61, 703–711. https://doi.org/10.1016/j.foodhyd.2016.06.035
Bai, L., Huan, S., Li, Z. & McClements, D. J. (2017). Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum Arabic, beet pectin, and corn fiber gum. Food Hydrocolloids, 66, 144–153. https://doi.org/10.1016/j.foodhyd.2016.12.019
Bashir, M. & Haripriya, S. (2016). Assessment of Physical and Structural Characteristics of Almond Gum. International Journal of Biological Macromolecules, 93, 476–482. https://doi.org/10.1016/j.ijbiomac.2016.09.009
Bouyer, E., Mekhloufi, G., Rosilio, V., Grossiord, JL. & Agnely, F. (2012). Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? International Journal of Pharmaceutics, 436(1–2), 359–378. https://doi.org/10.1016/j.ijpharm.2012.06.052
Cserháti, T., Forgács, E. & Oros, G. (2002). Biological activity and environmental impact of anionic surfactants. Environment International, 28(5), 337–348. https://doi.org/10.1016/S0160-4120(02)00032-6
Dammak, I., Sobral, P. J. D. A., Aquino, A., Neves, M. A. D. & Conte‐Junior, C. A. (2020). Nanoemulsions: Using Emulsifiers from Natural Sources Replacing Synthetic Ones—A Review. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2721–2746. https://doi.org/10.1111/1541-4337.12606
Dickinson, E. (2003). Hydrocolloids at Interfaces and the Influence on the Properties of Dispersed Systems. Food Hydrocolloids, 17(1), 25–39. https://doi.org/10.1016/S0268-005X(01)00120-5
Kang, Y. R., Lee, Y. K., Kim, Y. J. & Chang, Y. H. (2019). Characterization and Storage Stability of Chlorophylls Microencapsulated in Different Combination of Gum Arabic and Maltodextrin. Food Chemistry, 272, 337–346. https://doi.org/10.1016/j.foodchem.2018.08.063
Kim, W., Wang, Y. & Selomulya, C. (2020). Dairy and Plant Proteins as Natural Food Emulsifiers. Trends in Food Science & Technology, 105, 261–272. https://doi.org/10.1016/j.tifs.2020.09.012
Komaiko, J., Sastrosubroto, A. & McClements, D. J. (2016). Encapsulation of ω-3 Fatty Acids in Nanoemulsion-Based Delivery Systems Fabricated from Natural Emulsifiers: Sunflower Phospholipids. Food Chemistry, 203, 331–339. https://doi.org/10.1016/j.foodchem.2016.02.080
Kralova, I. & Sjöblom, J. (2009). Surfactants Used in Food Industry: A Review. Journal of Dispersion Science and Technology, 30(9), 1363–1383. https://doi.org/10.1080/01932690902735561
Krstonošić, V., Dokić, L., Dokić, P. & Dapčević, T. (2009). Effects of Xanthan Gum on Physicochemical Properties and Stability of Corn Oil-in-Water Emulsions Stabilized by Polyoxyethylene (20) Sorbitan Monooleate. Food Hydrocolloids, 23(8), 2212–2218. https://doi.org/10.1016/j.foodhyd.2009.05.003
Lam, R. S. H. & Nickerson, M. T. (2013). Food Proteins: A Review on Their Emulsifying Properties Using a Structure–Function Approach. Food Chemistry, 141(2), 975–984. https://doi.org/10.1016/j.foodchem.2013.04.038
Lee, H. W., Lu, Y., Zhang, Y., Fu, C. & Huang, D., (2021). Physicochemical and Functional Properties of Red Lentil Protein Isolates from Three Origins at Different pH. Food Chemistry, 358, 129749. https://doi.org/10.1016/j.foodchem.2021.129749
Lei, M., Jiang, F. C., Cai, J., Hu, S., Zhou, R., Liu, G., Wang, Y. H., Wang, H.B., He, J. R. & Xiong, X.G. (2018). Facile Microencapsulation of Olive Oil in Porous Starch Granules: Fabrication, Characterization, and Oxidative Stability. International Journal of Biological Macromolecules, 111, 755–761. https://doi.org/10.1016/j.ijbiomac.2018.01.051
Leroux, J., Langendorff, V., Schick, G., Vaishnav, V. & Mazoyer, J. (2003). Emulsion Stabilizing Properties of Pectin. Food Hydrocolloids, 17(4), 455–462. https://doi.org/10.1016/S0268-005X(03)00027-4
Li, K., Fu, L., Zhao, Y. Y., Xue, S. W., Wang, P., Xu, X. L. & Bai, Y. H. (2020). Use of High-Intensity Ultrasound to Improve Emulsifying Properties of Chicken Myofibrillar Protein and Enhance the Rheological Properties and Stability of the Emulsion. Food Hydrocolloids, 98, 105275. https://doi.org/10.1016/j.foodhyd.2019.105275
Li, Q., Wang, Z., Dai, C., Wang, Y., Chen, W., Ju, X., Yuan, J. & He, R. (2019). Physical Stability and Microstructure of Rapeseed Protein Isolate/Gum Arabic Stabilized Emulsions at Alkaline pH. Food Hydrocolloids, 88, 50–57. https://doi.org/10.1016/j.foodhyd.2018.09.020
Liu, Y., Wei, Z. C., Deng, Y. Y., Dong, H., Zhang, Y., Tang, X. J. & Zhang, M. W. (2020). Comparison of the effects of different food-grade emulsifiers on the properties and stability of a casein-maltodextrin-soybean oil compound emulsion. Molecules, 25(3), 458. https://doi.org/10.3390/molecules25030458
Liwarska-Bizukojc, E., Miksch, K., Malachowska-Jutsz, A. & Kalka, J. (2005). Acute Toxicity and Genotoxicity of Five Selected Anionic and Nonionic Surfactants. Chemosphere, 58(9), 1249–1253. https://doi.org/10.1016/j.chemosphere.2004.10.031
McClements, D. J. (2007). Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Critical Reviews in Food Science and Nutrition, 47(7), 611–649. https://doi.org/10.1080/10408390701289292
McClements, D. J. (2014). Nanoparticle-and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds. CRC press.
McClements, D. J. (2015). Emulsion Stability. In Food emulsions. CRC Press.
McClements D. J., Bai, L. & Chung, C., (2017). Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. Annual Review of Food Science and Technology, 8(1), 205–236. https://doi.org/10.1146/annurev-food-030216-030154
Qu, W., Zhang, X., Chen, W., Wang, Z., He, R., & Ma, H. (2018). Effects of ultrasonic and graft treatments on grafting degree, structure, functionality, and digestibility of rapeseed protein isolate-dextran conjugates. Ultrasonics Sonochemistry, 42, 250-259. https://doi.org/10.1016/j.ultsonch.2017.11.021
Raikos, V., Duthie, G. & Ranawana, V. (2017). Comparing the Efficiency of Different Food-Grade Emulsifiers to Form and Stabilise Orange Oil-in-Water Beverage Emulsions: Influence of Emulsifier Concentration and Storage Time. International Journal of Food Science & Technology, 52(2), 348–358. https://doi.org/10.1111/ijfs.13286
Randall, R. C., Phillips, G. O. & Williams, P. A. (1988). The role of the Proteinaceous Component on the Emulsifying Properties of Gum Arabic. Food Hydrocolloids, 2(2), 131–140. https://doi.org/10.1016/S0268-005X(88)80011-0
Shu, G., Khalid, N., Chen, Z., Neves, M. A., Barrow, C. J. & Nakajima, M. (2018). Formulation and Characterization of Astaxanthin-Enriched Nanoemulsions Stabilized Using Ginseng Saponins as Natural Emulsifiers. Food Chemistry, 255, 67–74. https://doi.org/10.1016/j.foodchem.2018.02.062
Sun, J., Liu, T., Mu, Y., Jing, H., Obadi, M., & Xu, B. (2021). Enhancing the stabilization of β-carotene emulsion using ovalbumin-dextran conjugates as emulsifier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 126806. https://doi.org/10.1016/j.colsurfa.2021.126806
Vlachy, N., Touraud, D., Heilmann, J. & Kunz, W. (2009). Determining the Cytotoxicity of Catanionic Surfactant Mixtures on HeLa cells. Colloids and Surfaces B: Biointerfaces, 70(2), 278–280. https://doi.org/10.1016/j.colsurfb.2008.12.038
Wan, Y., Wang, R., Feng, W., Chen, Z. & Wang, T. (2021). High Internal Phase Pickering Emulsions Stabilized by Co-Assembled Rice Proteins and Carboxymethyl Cellulose for Food-Grade 3D Printing. Carbohydrate Polymers, 273, 118586. https://doi.org/10.1016/j.carbpol.2021.118586
Wang, W., Du, G., Li, C., Zhang, H., Long, Y. & Ni, Y. (2016). Preparation of Cellulose Nanocrystals from Asparagus (Asparagus officinalis L.) and Their Applications to Palm Oil/Water Pickering Emulsion. Carbohydrate Polymers, 151, 1–8. https://doi.org/10.1016/j.carbpol.2016.05.052
Zhu, F. (2019). Starch Based Pickering Emulsions: Fabrication, Properties, and Applications. Trends in Food Science & Technology, 85, 129–137. https://doi.org/10.1016/j.tifs.2019.01.012
Zou, W., Tang, S., Li, Q., Hu, G., Liu, L., Jin, Y. & Cai, Z. (2020). Addition of Cationic Guar-Gum and Oleic Acid Improved the Stability of Plasma Emulsions Prepared with Enzymatically Hydrolyzed Egg Yolk. Food Hydrocolloids, 105, 105827. https://doi.org/10.1016/j.foodhyd.2020.105827
Başyiğit, B. (2023). Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları. Journal of the Institute of Science and Technology, 13(1), 341-351. https://doi.org/10.21597/jist.1201844
AMA
Başyiğit B. Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları. Iğdır Üniv. Fen Bil Enst. Der. March 2023;13(1):341-351. doi:10.21597/jist.1201844
Chicago
Başyiğit, Bülent. “Arap Zamkı, Karboksimetil Selüloz Ve Maltodekstrin Ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları”. Journal of the Institute of Science and Technology 13, no. 1 (March 2023): 341-51. https://doi.org/10.21597/jist.1201844.
EndNote
Başyiğit B (March 1, 2023) Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları. Journal of the Institute of Science and Technology 13 1 341–351.
IEEE
B. Başyiğit, “Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 1, pp. 341–351, 2023, doi: 10.21597/jist.1201844.
ISNAD
Başyiğit, Bülent. “Arap Zamkı, Karboksimetil Selüloz Ve Maltodekstrin Ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları”. Journal of the Institute of Science and Technology 13/1 (March 2023), 341-351. https://doi.org/10.21597/jist.1201844.
JAMA
Başyiğit B. Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:341–351.
MLA
Başyiğit, Bülent. “Arap Zamkı, Karboksimetil Selüloz Ve Maltodekstrin Ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları”. Journal of the Institute of Science and Technology, vol. 13, no. 1, 2023, pp. 341-5, doi:10.21597/jist.1201844.
Vancouver
Başyiğit B. Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(1):341-5.