Research Article
BibTex RIS Cite

Spiranthes spiralis (L.) Chevall'de mikorizal çeşitlilik

Year 2024, , 52 - 65, 01.03.2024
https://doi.org/10.21597/jist.1403162

Abstract

Tehdit altındaki orkidelerin etkili bir şekilde korunması için kökle ilişkili fungusların tanımlanması ve tohum çimlenmesinde etkinliğinin değerlendirilmesi koruma protokolleri oluşturmak için önemlidir. Bu nedenle çalışmamızda Spiranthes spiralis (L.) Chevall 'in kök-ilişkili funguslarının çeşitliliği araştırılmıştır.. Kültüre bağımlı yaklaşımına göre, 'in köklerinden 37 endofitik fungus izole edilmiş, morfolojik ve moleküler tanımlamaları yapılmıştır. kökünde baskın fungus türünün Tulasnella cinsi olduğu belirlenmiştir. Türkiye'de ilk kez köklerinden Thanatephorus fusisporus türü izole edilmiştir. İzole edilen fungusların S. spiralis tohumlarını simbiyotik kültürde çimlendirme etkinlikleri değerlendirilmiştir. Nisan ayında izole edilen VY 25 (Tulasnella) izolatı en yüksek çimlenme oranını (%73.77) göstermiştir. VY 1, VY 4, VY 8, VY 16, VY 25, VY 30, (Tulasnella) izolatları çimlenmeyi ve fide gelişimini teşvik etmiştir. Thanatephorus (%46.79) ve Ceratobasidium (%32.42) cinslerinin ise tohumlarını çimlendirmede etkili olmadığı görülmüştür. Araştırma, fungal partnerin gelişim evrelerine ve/veya aylara göre değiştiğini ortaya koymuştur. Bu çalışma, Türkiye’de köklerinden izole edilen organizmalar için ilk moleküler verileri içermektedir. Aynı zamanda bu sonuçlara göre, tohum çimlenmesini ve bitki büyümesini destekleyen funguslar, nesli tükenmekte olan ılıman orkidelerin korunması ve doğaya yeniden kazandırılması için önerilebilir.

Project Number

(TUBITAK) (Project No 113Z849 )

References

  • Afridi, M.S.; Ali, S.; Salam, A.; César Terra, W.; Hafeez, A.; Sumaira; Ali, B.; S. AlTami, M.; Ameen, F.; Ercisli, S.; et al. (2022). Plant Microbiome Engineering: Hopes or Hypes. Biology, 11, 1782. https://doi.org/10.3390/ biology11121782
  • Aggarwal, S., Zettler, L.W. (2010.) Reintroduction of an endangered terrestrial orchid, Dactylorhiza hatagirea (D.Don) Soo, assisted by symbiotic seed germination: First report from the Indian subcontinent. Nat. Sci., 8: 139-45
  • Attri L.K. (2022). A study on mycorhizal associations in an economically important orchid, Phytology, 2,4, 38-43
  • Bandoni, R.J. (1979). Safranin O as a rapid nuclear stain for fungi”, Mycologia, 7: 873-874.
  • Batty, A.L., Brundrett, M.C., Dixon, K.W., Sivasithamparam, K. (2006). In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites Australian Journal of Botany, 54: 375-381
  • Calevo, J., Voyron, S., Ercole, E., Girlanda, M. (2020). Is the Distribution of Two Rare Orchis Sister Species Limited by Their Main Mycobiont? Diversity. 12(7), 262
  • Carling, D. E., Leiner, R.H., Kebler K.M. (1987). Characterization of a new anastomosis group (AG-9) of Rhizoctonia solani. Phytopathology 77: 1609-1612.
  • Chase, M.W., Cameron, K.M., Freudenstein, J.V., Pridgeon, A.M., Salazar, G., Van den Berg, C., Schuiteman, A. (2015). An updated classification of Orchidaceae. Botanical Journal of the Linnean Society, in press.
  • Clements, M.A., Muir, H., Cribb, P.J. (1986). A Preliminary Report on the Symbiotic Germination of European Terrestrial Orchids. Kew Bulletin 41 (2): 437-445.
  • Davis, P.H. (1967). Flora of Turkey and the East Aegean Islands : Volume 2, Edinburgh University Press, Edinburgh.
  • Dearnaley, J.D.W., Martos, F., Selosse, M.A. (2012). Orchid mycorrhizas: molecular ecology, physiology, evolution, and conservation aspects. In: Hock, B., (ed), Fungal Associations, The Mycota (ed Karl Esser): vol 9: 207-230.Springer, Berlin, Heidelberg,
  • Decruse, S.W., Neethu, R.S., Pradeep, N.S. (2018). Seed germination and seedling growth promoted by a Ceratobasidiaceae clone in Vanda thwaitesii Hook. f., an endangered orchid species endemic to SouthWestern Ghats, India, and Sri Lanka. South African Journal of Botany 116: 222-229
  • Ding, R., Chen, X.H., Zhang, L.J., Yu, X.D., Qu, B., Duan, R., Xu, Y.F. (2014). Identity and Specificity of Rhizoctonia-Like Fungi from Different Populations of Liparis japonica (Orchidaceae) in Northeast China. Plos One 9, e105573.
  • Dighton, J. (2009). Mycorrhizae in Encyclopedia of microbiology. Amsterdam: Elsevier Inc, 153–162. doi: 10.1016/B978-012373944-5.00327-8
  • Ercole, E., Adamo, M., Rodda, M., Gebaur,G., Girlanda, M., Perotto, S. (2015). Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio. New Phytologist. 205:1308-1319.
  • Fay, M.F., Chase, M.W. (2009). Orchid biology: from Linnaeus via Darwin to the 21st century. Annals of Botany 104:359–364.
  • Fujimori, S., Abe, J.P., Okane, I., Yamaoka, Y. (2018). Three new species in the genus Tulasnella isolated from orchid mycorrhiza of Spiranthes sinensis var. amoena (Orchidaceae) Mycoscience, 60 (2018), pp. 71-81
  • Gale, S W., Fischer, G.A., Cribb, P.J., Fay, M.F. (2018). Orchid conservation: bridging the gap between science and practice. Bot. J. Linn. Soc. 186, 425–434. doi: 10.1093/botlinnean/boy003
  • Girlanda, M., Segreto, R., Cafasso, D., Liebel, H.T., Rodda, M., Ercole, E., Cozzolino, S., Gebauer, G., Perotto, S. (2011). Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. American Journal of Botany 98: 1148–1163.
  • Güner, A., Aslan, S., Ekim, T., Vural, M., Babaç, M.T. (edlr.) (2012). List of Plants of Turkey (Vascular Plants), Nezahat Gökyiğit Botanical Garden, and Flora Research Association Publication.
  • Hall, T.A., (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT Nucleic Acids Symposium Series, 41: 95–98.
  • Herrera, H., Valadares, R., Contreras, D., Bashan, Y., Arriagada, C. (2017). Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south-central Chile. Mycorrhiza 27:175–188. https://doi.org/10.1007/s00572-016-0733-0
  • Jacquemyn, H., Honnay, O., Cammue, B.P.A., Brys, R., Lievens, B. (2010).The low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis. Molecular Ecology 19: 4086–4095. https://doi.org/10.1111/j.1365-294X.2010.04785.x
  • Jacquemyn, H., Merckx, V., Brys, R., Tyteca, D., Cammue, B.P.A., Honnay, O., Lievens, B. (2011). Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytologist 192: 518–528. https://doi.org/10.1111/j.1469-8137.2011.03796.x
  • Jacquemyn, H., Deja, A, De Hert, K., Cachapa, Bailarote, B., Lievens, B. (2012). Variation in mycorrhizal associations with tulasnelloid fungi among populations of five Dactylorhiza species, Plos One 7(8): e42212. doi:10.1371/journal.pone.0042212.
  • Jumpponen A. (2001). Dark septate endophytes are they mycorrhizal? Mycorrhiza 11: 207e211
  • Kohout, P., Těšitelová, T., Roy, M., Vohník, M., Jersáková, J. (2013). A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecology 6: 50-64.
  • Kömpe, Y.O., Mutlu, V.A., Ozkoc, I. (2020). The viability of Anacamptis laxiflora (Orchidaceae) seeds and the symbiotic germination. Plant Biosystems- An International Journal Dealing with all Aspects of Plant Biology 154(6):800-805https://doi.org/10.1080/11263504.2019.1701118
  • Kömpe, Y.O., Mutlu V.A. (2021). Ex vitro symbiotic germination of the seeds of Anacamptis coriophora (L.) R.M. Bateman, Pritgeon & M.W. Chase and Orchis anatolica Boiss. Biologia Futura 72: 509–516 https://doi.org/10.1007/s42977-021-00100-5
  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948
  • Lievens, B., van Kerckhove, S., Juste, ́ A., Cammue, B.P.A., Honnay, O., Jacquemyn, H. (2010). From extensive clone libraries to com-prehensive DNA arrays for the efficient and simultaneous detection and identification of orchid mycorrhizal fungi. Journal of Microbial Methods 80:76–85.
  • Ling-Ling, X.U., Yan, Z., Jing, X.U. (2019). Tulasnellaceae associated with orchids: taxonomy, diversity, specificity and plasticity, Mycosystema, 38,3, 291-312
  • McCormick, M.K., Whigham, D.F., O'Neill, J. (2004). Mycorrhizal diversity in photosynthetic terrestrial orchids, New Phytologist 163, 425–438.
  • Mutlu, V.A., Kömpe, Y.O. (2020). Mycorrhizal Fungi Of Some Orchis Species of Turkey. Pakistan Journal of Botany 52(2), 687-695.
  • Oja, J., Kohout, P., Tederson, L., Kull, T. (2020). Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing
  • Pascual, C.B., Toda, T., Raymondo, A.D., Hyakumachi, M. (2001). Characterization by conventional techniques and PCR of Rhizoctonia solani isolates causing banded leaf sheath blight in maize. Plant Pathology 49, 108-118.
  • Peterson, R.L., Massicotte, H.B., Melville, L.H. (20049. Mycorrhizas: Anatomy and Cell Biology. Ottawa, Canada: National Research Council Research Press.
  • Posada, D. (2008). jModeltest: phylogenetic model averaging. Mol BiolEvol 25:1253–1256.
  • Rankou, H., (2011) Spiranthes spiralis (Europe assessment). The IUCN Red List of Threatened Species 2011: e.T176035A7180363. Accessed 27 December 2023.
  • Rasmussen, H.N., Rasmussen, F.N. (2009). Orchid mycorrhiza: implications of a mycophagous life style Oikos, 118, 334-335.
  • Rasmussen, H.N., Whigham, D. F. (2002). Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy, New Phytologist, 154: 797-807.
  • Rasmussen, H.N. (2002). Recent developments in the study of orchid mycorrhiza, Plant and Soil. 244: 149 – 163.
  • Roberts P., (1999). Rhizoctonia-forming fungi. A taxonomic guide. The Herbarium, Royal Botanic Gardens, Kew.
  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution 34: 3299–3302.
  • Sathiyadash, K., Muthukumar, T., Murugan, S. B, Sathishkumar, R., Pandey, R. R. (2014). In vitro symbiotic seed germination of South Indian endemic orchid Coelogyne nervosa. Mycoscience. 55: 183-89
  • Salazar, O., Schneide, J.H.M., Julian, M.C., Keije, J., Rubio, V. (1999). Phylogenetic subgrouping of Rhizoctonia solani AG2 isolates based on ribosomal ITS sequences. Mycologia 91 (3), 459-467
  • Sazak, A., Ozdener, Y. (2006). Symbiotic and asymbiotic germination of endangered Spiranthes spiralis (L.) Chevall. and Dactylorhiza osmanica (KI.) Soó var. osmanica (Endemic). Pakistan Journal of Biological Sciences 9 12: 2222-2228.
  • Shao, S.C., Burgess, K.S., Cruse Sanders, J. M., Liu, Q., Fan, X. L., Gao, J. (2017). Using in situ symbiotic seed germination to restore over-collected medicinal orchids in southwest China. Front. Plant Sci. 8:888. 10.3389/fpls.2017.00888
  • Sneh, B., Burpee, L., Ogoshi, A. (1991). Identification of Rhizoctonia species, St. Paul, Minnesota, APS PRESS, The American Phytopathological Society. Pages 133.
  • Stewart, S., Kane, M. (2006). Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid plant Cell Tissue and Organ Culture, 86:159-167.
  • Smith, S.E., Read D. (2008). The mycorrhizas of green orchids. In SES Read, ed, Mycorrhizal Symbiosis, Ed 3. Academic Press, London, pp 419– 457.
  • Swarts, N.D., Dixon, K.W. (2009). Terrestrial orchid conservation in the age of extinction. Ann Bot 104(3): 543–556. https://doi.org/10.1093/aob/mcp025
  • Swarts, N., Dixon, K.W. (2017). Conservation Methods for Terrestrial Orchids. University of Tasmania. Book. https://hdl.handle.net/102.100.100/539343
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Molecular Biology and Evolution, 30, 2725-2729.
  • Tondello, A., Vendramin, E., Villani, M., Baldan, B., Squartini, A. (2012). Fungi associated with the southern Eurasian orchid Spiranthes spiralis (L.) Chevall, Fungal Biology. 116: 543-549.
  • Valadares, R., Pereira, M., Otero J., Cardoso E. (2011). Narrow fungal mycorrhizal diversity in a population of the orchid Coppensia doniana. Biotropica 44:114–122. https://doi.org/10.1111/j.1744-7429.2011.00769.x
  • Warcup, J.H. (1971). Specificity of mycorrhizal association in some Australian terrestrial orchids, New Phytologist, 70: 41 – 46.
  • Warcup, J.H. (1981). The mycorrhizal relationships of Australian orchids, New Phytologist, 87, 371 – 381.
  • Willis, K.J. (2017). State of the World's plants Report 2017. Royal Botanic Gardens, Kew.
  • White, T.J. B., Bruns, T., Lee, S., Taylor, J. (1990). Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. – In: Inis M. A., Gelfand, D. H., Sninsky, J. J., White, T. J. (ed.) PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego.
  • Zhang, Y., Li, Y.Y., Chen, X.M., Guo, S.X., Lee, Y.I. (2020). Effect of different mycobionts on symbiotic germination and seedling growth of Dendrobium officinale, an important medicinal orchid Botanical Studies., 61, 2
  • Zettler, L.W., Corey, L.L., Richardson, L.W., Ross, A.Y., Moller-Jacobs, L. (2011). Protocorms of an epiphytic orchid (Epidendrum phistomum A. Richard) recovered in situ, and subsequent identification of associated mycorrhizal fungi using molecular markers. Eur. J. Environ. Sci., 1:108.114.

Mycorrhizal diversity in Spiranthes spiralis (L.) Chevall

Year 2024, , 52 - 65, 01.03.2024
https://doi.org/10.21597/jist.1403162

Abstract

For effective conservation of threatened orchids, identifying root-associated fungi and assessing their activity in seed germination is important for establishing conservation protocols. Therefore, our study investigated the diversity of Spiranthes spiralis‘s root-associated fungi. According to the culture-dependent approach, 37 endophytic fungi were isolated from the roots and morphologically and molecularly identified. It was determined that the dominant fungal species in the roots was the genus Tulasnella. For the first time in Türkiye, the Thanatephorus fusisporus species was isolated from roots. The germination efficiency of the isolated fungi in the symbiotic culture of S. spiranthes seeds was evaluated. VY 25 (Tulasnella) isolate isolated in April showed the highest germination rate (73.77%). VY 4, VY 18, VY 25, (Tulasnella) isolates promoted germination and seedling development. Thanatephorus (46.79%) and Ceratobasidium (32.42%) were not effective in germinating seeds. The study revealed that the fungal partner varied according to developmental stages and months. This study contains the first molecular data for organisms isolated from roots in Türkiye. According to these results, fungi that promote seed germination and plant growth can be recommended for the conservation and reintroduction of endangered temperate orchids.

Supporting Institution

Tubitak

Project Number

(TUBITAK) (Project No 113Z849 )

Thanks

We thank Tubitak for their financial contribution.

References

  • Afridi, M.S.; Ali, S.; Salam, A.; César Terra, W.; Hafeez, A.; Sumaira; Ali, B.; S. AlTami, M.; Ameen, F.; Ercisli, S.; et al. (2022). Plant Microbiome Engineering: Hopes or Hypes. Biology, 11, 1782. https://doi.org/10.3390/ biology11121782
  • Aggarwal, S., Zettler, L.W. (2010.) Reintroduction of an endangered terrestrial orchid, Dactylorhiza hatagirea (D.Don) Soo, assisted by symbiotic seed germination: First report from the Indian subcontinent. Nat. Sci., 8: 139-45
  • Attri L.K. (2022). A study on mycorhizal associations in an economically important orchid, Phytology, 2,4, 38-43
  • Bandoni, R.J. (1979). Safranin O as a rapid nuclear stain for fungi”, Mycologia, 7: 873-874.
  • Batty, A.L., Brundrett, M.C., Dixon, K.W., Sivasithamparam, K. (2006). In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites Australian Journal of Botany, 54: 375-381
  • Calevo, J., Voyron, S., Ercole, E., Girlanda, M. (2020). Is the Distribution of Two Rare Orchis Sister Species Limited by Their Main Mycobiont? Diversity. 12(7), 262
  • Carling, D. E., Leiner, R.H., Kebler K.M. (1987). Characterization of a new anastomosis group (AG-9) of Rhizoctonia solani. Phytopathology 77: 1609-1612.
  • Chase, M.W., Cameron, K.M., Freudenstein, J.V., Pridgeon, A.M., Salazar, G., Van den Berg, C., Schuiteman, A. (2015). An updated classification of Orchidaceae. Botanical Journal of the Linnean Society, in press.
  • Clements, M.A., Muir, H., Cribb, P.J. (1986). A Preliminary Report on the Symbiotic Germination of European Terrestrial Orchids. Kew Bulletin 41 (2): 437-445.
  • Davis, P.H. (1967). Flora of Turkey and the East Aegean Islands : Volume 2, Edinburgh University Press, Edinburgh.
  • Dearnaley, J.D.W., Martos, F., Selosse, M.A. (2012). Orchid mycorrhizas: molecular ecology, physiology, evolution, and conservation aspects. In: Hock, B., (ed), Fungal Associations, The Mycota (ed Karl Esser): vol 9: 207-230.Springer, Berlin, Heidelberg,
  • Decruse, S.W., Neethu, R.S., Pradeep, N.S. (2018). Seed germination and seedling growth promoted by a Ceratobasidiaceae clone in Vanda thwaitesii Hook. f., an endangered orchid species endemic to SouthWestern Ghats, India, and Sri Lanka. South African Journal of Botany 116: 222-229
  • Ding, R., Chen, X.H., Zhang, L.J., Yu, X.D., Qu, B., Duan, R., Xu, Y.F. (2014). Identity and Specificity of Rhizoctonia-Like Fungi from Different Populations of Liparis japonica (Orchidaceae) in Northeast China. Plos One 9, e105573.
  • Dighton, J. (2009). Mycorrhizae in Encyclopedia of microbiology. Amsterdam: Elsevier Inc, 153–162. doi: 10.1016/B978-012373944-5.00327-8
  • Ercole, E., Adamo, M., Rodda, M., Gebaur,G., Girlanda, M., Perotto, S. (2015). Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio. New Phytologist. 205:1308-1319.
  • Fay, M.F., Chase, M.W. (2009). Orchid biology: from Linnaeus via Darwin to the 21st century. Annals of Botany 104:359–364.
  • Fujimori, S., Abe, J.P., Okane, I., Yamaoka, Y. (2018). Three new species in the genus Tulasnella isolated from orchid mycorrhiza of Spiranthes sinensis var. amoena (Orchidaceae) Mycoscience, 60 (2018), pp. 71-81
  • Gale, S W., Fischer, G.A., Cribb, P.J., Fay, M.F. (2018). Orchid conservation: bridging the gap between science and practice. Bot. J. Linn. Soc. 186, 425–434. doi: 10.1093/botlinnean/boy003
  • Girlanda, M., Segreto, R., Cafasso, D., Liebel, H.T., Rodda, M., Ercole, E., Cozzolino, S., Gebauer, G., Perotto, S. (2011). Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. American Journal of Botany 98: 1148–1163.
  • Güner, A., Aslan, S., Ekim, T., Vural, M., Babaç, M.T. (edlr.) (2012). List of Plants of Turkey (Vascular Plants), Nezahat Gökyiğit Botanical Garden, and Flora Research Association Publication.
  • Hall, T.A., (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT Nucleic Acids Symposium Series, 41: 95–98.
  • Herrera, H., Valadares, R., Contreras, D., Bashan, Y., Arriagada, C. (2017). Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south-central Chile. Mycorrhiza 27:175–188. https://doi.org/10.1007/s00572-016-0733-0
  • Jacquemyn, H., Honnay, O., Cammue, B.P.A., Brys, R., Lievens, B. (2010).The low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis. Molecular Ecology 19: 4086–4095. https://doi.org/10.1111/j.1365-294X.2010.04785.x
  • Jacquemyn, H., Merckx, V., Brys, R., Tyteca, D., Cammue, B.P.A., Honnay, O., Lievens, B. (2011). Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytologist 192: 518–528. https://doi.org/10.1111/j.1469-8137.2011.03796.x
  • Jacquemyn, H., Deja, A, De Hert, K., Cachapa, Bailarote, B., Lievens, B. (2012). Variation in mycorrhizal associations with tulasnelloid fungi among populations of five Dactylorhiza species, Plos One 7(8): e42212. doi:10.1371/journal.pone.0042212.
  • Jumpponen A. (2001). Dark septate endophytes are they mycorrhizal? Mycorrhiza 11: 207e211
  • Kohout, P., Těšitelová, T., Roy, M., Vohník, M., Jersáková, J. (2013). A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecology 6: 50-64.
  • Kömpe, Y.O., Mutlu, V.A., Ozkoc, I. (2020). The viability of Anacamptis laxiflora (Orchidaceae) seeds and the symbiotic germination. Plant Biosystems- An International Journal Dealing with all Aspects of Plant Biology 154(6):800-805https://doi.org/10.1080/11263504.2019.1701118
  • Kömpe, Y.O., Mutlu V.A. (2021). Ex vitro symbiotic germination of the seeds of Anacamptis coriophora (L.) R.M. Bateman, Pritgeon & M.W. Chase and Orchis anatolica Boiss. Biologia Futura 72: 509–516 https://doi.org/10.1007/s42977-021-00100-5
  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948
  • Lievens, B., van Kerckhove, S., Juste, ́ A., Cammue, B.P.A., Honnay, O., Jacquemyn, H. (2010). From extensive clone libraries to com-prehensive DNA arrays for the efficient and simultaneous detection and identification of orchid mycorrhizal fungi. Journal of Microbial Methods 80:76–85.
  • Ling-Ling, X.U., Yan, Z., Jing, X.U. (2019). Tulasnellaceae associated with orchids: taxonomy, diversity, specificity and plasticity, Mycosystema, 38,3, 291-312
  • McCormick, M.K., Whigham, D.F., O'Neill, J. (2004). Mycorrhizal diversity in photosynthetic terrestrial orchids, New Phytologist 163, 425–438.
  • Mutlu, V.A., Kömpe, Y.O. (2020). Mycorrhizal Fungi Of Some Orchis Species of Turkey. Pakistan Journal of Botany 52(2), 687-695.
  • Oja, J., Kohout, P., Tederson, L., Kull, T. (2020). Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing
  • Pascual, C.B., Toda, T., Raymondo, A.D., Hyakumachi, M. (2001). Characterization by conventional techniques and PCR of Rhizoctonia solani isolates causing banded leaf sheath blight in maize. Plant Pathology 49, 108-118.
  • Peterson, R.L., Massicotte, H.B., Melville, L.H. (20049. Mycorrhizas: Anatomy and Cell Biology. Ottawa, Canada: National Research Council Research Press.
  • Posada, D. (2008). jModeltest: phylogenetic model averaging. Mol BiolEvol 25:1253–1256.
  • Rankou, H., (2011) Spiranthes spiralis (Europe assessment). The IUCN Red List of Threatened Species 2011: e.T176035A7180363. Accessed 27 December 2023.
  • Rasmussen, H.N., Rasmussen, F.N. (2009). Orchid mycorrhiza: implications of a mycophagous life style Oikos, 118, 334-335.
  • Rasmussen, H.N., Whigham, D. F. (2002). Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy, New Phytologist, 154: 797-807.
  • Rasmussen, H.N. (2002). Recent developments in the study of orchid mycorrhiza, Plant and Soil. 244: 149 – 163.
  • Roberts P., (1999). Rhizoctonia-forming fungi. A taxonomic guide. The Herbarium, Royal Botanic Gardens, Kew.
  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution 34: 3299–3302.
  • Sathiyadash, K., Muthukumar, T., Murugan, S. B, Sathishkumar, R., Pandey, R. R. (2014). In vitro symbiotic seed germination of South Indian endemic orchid Coelogyne nervosa. Mycoscience. 55: 183-89
  • Salazar, O., Schneide, J.H.M., Julian, M.C., Keije, J., Rubio, V. (1999). Phylogenetic subgrouping of Rhizoctonia solani AG2 isolates based on ribosomal ITS sequences. Mycologia 91 (3), 459-467
  • Sazak, A., Ozdener, Y. (2006). Symbiotic and asymbiotic germination of endangered Spiranthes spiralis (L.) Chevall. and Dactylorhiza osmanica (KI.) Soó var. osmanica (Endemic). Pakistan Journal of Biological Sciences 9 12: 2222-2228.
  • Shao, S.C., Burgess, K.S., Cruse Sanders, J. M., Liu, Q., Fan, X. L., Gao, J. (2017). Using in situ symbiotic seed germination to restore over-collected medicinal orchids in southwest China. Front. Plant Sci. 8:888. 10.3389/fpls.2017.00888
  • Sneh, B., Burpee, L., Ogoshi, A. (1991). Identification of Rhizoctonia species, St. Paul, Minnesota, APS PRESS, The American Phytopathological Society. Pages 133.
  • Stewart, S., Kane, M. (2006). Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid plant Cell Tissue and Organ Culture, 86:159-167.
  • Smith, S.E., Read D. (2008). The mycorrhizas of green orchids. In SES Read, ed, Mycorrhizal Symbiosis, Ed 3. Academic Press, London, pp 419– 457.
  • Swarts, N.D., Dixon, K.W. (2009). Terrestrial orchid conservation in the age of extinction. Ann Bot 104(3): 543–556. https://doi.org/10.1093/aob/mcp025
  • Swarts, N., Dixon, K.W. (2017). Conservation Methods for Terrestrial Orchids. University of Tasmania. Book. https://hdl.handle.net/102.100.100/539343
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Molecular Biology and Evolution, 30, 2725-2729.
  • Tondello, A., Vendramin, E., Villani, M., Baldan, B., Squartini, A. (2012). Fungi associated with the southern Eurasian orchid Spiranthes spiralis (L.) Chevall, Fungal Biology. 116: 543-549.
  • Valadares, R., Pereira, M., Otero J., Cardoso E. (2011). Narrow fungal mycorrhizal diversity in a population of the orchid Coppensia doniana. Biotropica 44:114–122. https://doi.org/10.1111/j.1744-7429.2011.00769.x
  • Warcup, J.H. (1971). Specificity of mycorrhizal association in some Australian terrestrial orchids, New Phytologist, 70: 41 – 46.
  • Warcup, J.H. (1981). The mycorrhizal relationships of Australian orchids, New Phytologist, 87, 371 – 381.
  • Willis, K.J. (2017). State of the World's plants Report 2017. Royal Botanic Gardens, Kew.
  • White, T.J. B., Bruns, T., Lee, S., Taylor, J. (1990). Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. – In: Inis M. A., Gelfand, D. H., Sninsky, J. J., White, T. J. (ed.) PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego.
  • Zhang, Y., Li, Y.Y., Chen, X.M., Guo, S.X., Lee, Y.I. (2020). Effect of different mycobionts on symbiotic germination and seedling growth of Dendrobium officinale, an important medicinal orchid Botanical Studies., 61, 2
  • Zettler, L.W., Corey, L.L., Richardson, L.W., Ross, A.Y., Moller-Jacobs, L. (2011). Protocorms of an epiphytic orchid (Epidendrum phistomum A. Richard) recovered in situ, and subsequent identification of associated mycorrhizal fungi using molecular markers. Eur. J. Environ. Sci., 1:108.114.
There are 62 citations in total.

Details

Primary Language English
Subjects Ecology (Other)
Journal Section Biyoloji / Biology
Authors

Vildan Akın Mutlu 0000-0002-6330-105X

İbrahim Özkoç 0000-0001-8179-0961

Project Number (TUBITAK) (Project No 113Z849 )
Early Pub Date February 20, 2024
Publication Date March 1, 2024
Submission Date December 11, 2023
Acceptance Date January 31, 2024
Published in Issue Year 2024

Cite

APA Akın Mutlu, V., & Özkoç, İ. (2024). Mycorrhizal diversity in Spiranthes spiralis (L.) Chevall. Journal of the Institute of Science and Technology, 14(1), 52-65. https://doi.org/10.21597/jist.1403162
AMA Akın Mutlu V, Özkoç İ. Mycorrhizal diversity in Spiranthes spiralis (L.) Chevall. Iğdır Üniv. Fen Bil Enst. Der. March 2024;14(1):52-65. doi:10.21597/jist.1403162
Chicago Akın Mutlu, Vildan, and İbrahim Özkoç. “Mycorrhizal Diversity in Spiranthes Spiralis (L.) Chevall”. Journal of the Institute of Science and Technology 14, no. 1 (March 2024): 52-65. https://doi.org/10.21597/jist.1403162.
EndNote Akın Mutlu V, Özkoç İ (March 1, 2024) Mycorrhizal diversity in Spiranthes spiralis (L.) Chevall. Journal of the Institute of Science and Technology 14 1 52–65.
IEEE V. Akın Mutlu and İ. Özkoç, “Mycorrhizal diversity in Spiranthes spiralis (L.) Chevall”, Iğdır Üniv. Fen Bil Enst. Der., vol. 14, no. 1, pp. 52–65, 2024, doi: 10.21597/jist.1403162.
ISNAD Akın Mutlu, Vildan - Özkoç, İbrahim. “Mycorrhizal Diversity in Spiranthes Spiralis (L.) Chevall”. Journal of the Institute of Science and Technology 14/1 (March 2024), 52-65. https://doi.org/10.21597/jist.1403162.
JAMA Akın Mutlu V, Özkoç İ. Mycorrhizal diversity in Spiranthes spiralis (L.) Chevall. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:52–65.
MLA Akın Mutlu, Vildan and İbrahim Özkoç. “Mycorrhizal Diversity in Spiranthes Spiralis (L.) Chevall”. Journal of the Institute of Science and Technology, vol. 14, no. 1, 2024, pp. 52-65, doi:10.21597/jist.1403162.
Vancouver Akın Mutlu V, Özkoç İ. Mycorrhizal diversity in Spiranthes spiralis (L.) Chevall. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(1):52-65.