Research Article
BibTex RIS Cite

MOSFET Based Parallel Inductance Simulator

Year 2019, , 30 - 38, 01.03.2019
https://doi.org/10.21597/jist.428412

Abstract

In this paper inductance simulator based on MOSFET-only is presented. Inductance simulator consists of only two MOSFETs and a grounded capacitor in the core structure while the whole structure is made up of only five MOSFETs. It is used MOS-capacitance insteads of external capacitor in the presented inductance simulator. Inductance value can be tuned electronically by changing biasing voltage. Layout is laid by Cadence software and post-layout simulations are given in the paper. Second order voltage mode band-pass filter is given to demonstrate the performance of the proposed inductance simulator. Simulation results are in good agreement with theoretical results.

References

  • Alpaslan H, Yuce E, 2011. Bandwidth expansion methods of inductance simulator circuits and voltage-mode biquads. Journal of Circuits, Systems and Computers, 20(3):557–572.
  • Chang CM, Wang HY, Chien CC, 1994. Realization of series impedance functions using one CCII +. International Journal of Electronics, 76(1):83–85.
  • Cicekoglu MO, 1998, Active simulation of grounded inductors with CCII+s and grounded passive elements. International Journal of Electronics, 85(4):455–462.
  • Kacar F, Yesil A, 2010. Novel grounded parallel inductance simulators realization using a minimum number of active and passive components. Microelectronics Journal, 41(10):632–638.
  • Kacar F, Yesil A, Minaei S, Kuntman H, 2014. Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. AEU - International Journal of Electronics and Communications, 68(1):73–78.
  • Konal M, Kacar F, 2017. MOS Only Grounded Active Inductor Circuits and Their Filter Applications. Journal of Circuits, Systems and Computers, 26(6), 1750098.
  • Minaei S, Yuce E, 2012. A simple CMOS-based inductor simulator and frequency performance improvement techniques. AEU - International Journal of Electronics and Communications, 66(11): 884–891.
  • Pathak JK, Singh AK, Senani R, 2016. New canonic lossy inductor using a single CDBA and its application. International Journal of Electronics, 103(1):1–13
  • Prasad D, Bhaskar DR, Pushkar KL, 2011. Realization of New Electronically Controllable Grounded and Floating Simulated Inductance Circuits Using Voltage Differencing Differential Input Buffered Amplifiers. Active and Passive Electronic Components, 1–8.
  • Razavi B, 2017. Design of Analog CMOS Integrated Circuits. Mc Graw Hill Education (2nd ed.). Mc Graw Hill Education. Retrieved from http://www.lavoisier.fr/notice/frLMO62SSCRRJLO.
  • Saad S, Mhiri M, Hammadi A, Besbes K, 2016. A New Low-power, High- Q , Wide Tunable CMOS Active Inductor for RF Applications. IETE Journal of Research, 62(2):265–273.
  • Thanachayanont A, Payne A, 1996. VHF CMOS integrated active inductor. Electronics Letters, 32(11), 999.
  • Uyanik HU, Tarim N, 2007. Compact low voltage high-Q CMOS active inductor suitable for RF applications. Analog Integrated Circuits and Signal Processing, 51(3):191–194.
  • Yesil A, Kacar F, 2014. New Dxccii-Based Grounded Series Inductance Simulator Topologies. Istanbul University - Journal of Electrical and Electronics Engineering, 14(2):1785–1789.
  • Yesil A, Kacar F, Gurkan K, 2014. Lossless grounded inductance simulator employing single VDBA and its experimental band-pass filter application. AEU - International Journal of Electronics and Communications, 68(2):143–150.
  • Yuce E, 2008. Grounded Inductor Simulators With Improved Low-Frequency Performances. IEEE Transactions on Instrumentation and Measurement, 57(5):1079–1084.
  • Yuce E, Cicekoglu O, 2006. The Effects of Non-Idealities and Current Limitations on the Simulated Inductances Employing Current Conveyors. Analog Integrated Circuits and Signal Processing, 46(2):103–110.

MOSFET tabanlı kayıplı Endüktans benzetimi

Year 2019, , 30 - 38, 01.03.2019
https://doi.org/10.21597/jist.428412

Abstract

Bu çalışmada sadece MOSFET’lerden oluşan endüktans benzetimi devresi sunulmuştur. Ana yapı olarak sadece iki transistordan ve bir topraklı kapasiteden meydana gelmiştir. Kutuplanması yapılmış tüm yapı ise sadece beş transistordan oluşmaktadır. Devrede harici kapasite yerine MOS-kapasite kullanılmıştır. Devrenin endüktans değeri elektronik olarak ayarlanmaktadır. Devrenin serimi Cadence programı yardımıyla çizilmiş ve serim sonrası benzetimler makaleye eklenmiştir. Ayrıca sunulan endüktans benzetiminin performansını belirtmek amacıyla ikinci dereceden gerilim-modlu band-geçiren filtre devresi kurulmuştur. Benzetim sonuçları teorik sonuçlar ile uyum içinde olduğu görülmektedir.

References

  • Alpaslan H, Yuce E, 2011. Bandwidth expansion methods of inductance simulator circuits and voltage-mode biquads. Journal of Circuits, Systems and Computers, 20(3):557–572.
  • Chang CM, Wang HY, Chien CC, 1994. Realization of series impedance functions using one CCII +. International Journal of Electronics, 76(1):83–85.
  • Cicekoglu MO, 1998, Active simulation of grounded inductors with CCII+s and grounded passive elements. International Journal of Electronics, 85(4):455–462.
  • Kacar F, Yesil A, 2010. Novel grounded parallel inductance simulators realization using a minimum number of active and passive components. Microelectronics Journal, 41(10):632–638.
  • Kacar F, Yesil A, Minaei S, Kuntman H, 2014. Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. AEU - International Journal of Electronics and Communications, 68(1):73–78.
  • Konal M, Kacar F, 2017. MOS Only Grounded Active Inductor Circuits and Their Filter Applications. Journal of Circuits, Systems and Computers, 26(6), 1750098.
  • Minaei S, Yuce E, 2012. A simple CMOS-based inductor simulator and frequency performance improvement techniques. AEU - International Journal of Electronics and Communications, 66(11): 884–891.
  • Pathak JK, Singh AK, Senani R, 2016. New canonic lossy inductor using a single CDBA and its application. International Journal of Electronics, 103(1):1–13
  • Prasad D, Bhaskar DR, Pushkar KL, 2011. Realization of New Electronically Controllable Grounded and Floating Simulated Inductance Circuits Using Voltage Differencing Differential Input Buffered Amplifiers. Active and Passive Electronic Components, 1–8.
  • Razavi B, 2017. Design of Analog CMOS Integrated Circuits. Mc Graw Hill Education (2nd ed.). Mc Graw Hill Education. Retrieved from http://www.lavoisier.fr/notice/frLMO62SSCRRJLO.
  • Saad S, Mhiri M, Hammadi A, Besbes K, 2016. A New Low-power, High- Q , Wide Tunable CMOS Active Inductor for RF Applications. IETE Journal of Research, 62(2):265–273.
  • Thanachayanont A, Payne A, 1996. VHF CMOS integrated active inductor. Electronics Letters, 32(11), 999.
  • Uyanik HU, Tarim N, 2007. Compact low voltage high-Q CMOS active inductor suitable for RF applications. Analog Integrated Circuits and Signal Processing, 51(3):191–194.
  • Yesil A, Kacar F, 2014. New Dxccii-Based Grounded Series Inductance Simulator Topologies. Istanbul University - Journal of Electrical and Electronics Engineering, 14(2):1785–1789.
  • Yesil A, Kacar F, Gurkan K, 2014. Lossless grounded inductance simulator employing single VDBA and its experimental band-pass filter application. AEU - International Journal of Electronics and Communications, 68(2):143–150.
  • Yuce E, 2008. Grounded Inductor Simulators With Improved Low-Frequency Performances. IEEE Transactions on Instrumentation and Measurement, 57(5):1079–1084.
  • Yuce E, Cicekoglu O, 2006. The Effects of Non-Idealities and Current Limitations on the Simulated Inductances Employing Current Conveyors. Analog Integrated Circuits and Signal Processing, 46(2):103–110.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Yunus Babacan 0000-0002-6745-0626

Abdullah Yesıl 0000-0002-0607-8226

Publication Date March 1, 2019
Submission Date May 29, 2018
Acceptance Date September 5, 2018
Published in Issue Year 2019

Cite

APA Babacan, Y., & Yesıl, A. (2019). MOSFET tabanlı kayıplı Endüktans benzetimi. Journal of the Institute of Science and Technology, 9(1), 30-38. https://doi.org/10.21597/jist.428412
AMA Babacan Y, Yesıl A. MOSFET tabanlı kayıplı Endüktans benzetimi. Iğdır Üniv. Fen Bil Enst. Der. March 2019;9(1):30-38. doi:10.21597/jist.428412
Chicago Babacan, Yunus, and Abdullah Yesıl. “MOSFET Tabanlı kayıplı Endüktans Benzetimi”. Journal of the Institute of Science and Technology 9, no. 1 (March 2019): 30-38. https://doi.org/10.21597/jist.428412.
EndNote Babacan Y, Yesıl A (March 1, 2019) MOSFET tabanlı kayıplı Endüktans benzetimi. Journal of the Institute of Science and Technology 9 1 30–38.
IEEE Y. Babacan and A. Yesıl, “MOSFET tabanlı kayıplı Endüktans benzetimi”, Iğdır Üniv. Fen Bil Enst. Der., vol. 9, no. 1, pp. 30–38, 2019, doi: 10.21597/jist.428412.
ISNAD Babacan, Yunus - Yesıl, Abdullah. “MOSFET Tabanlı kayıplı Endüktans Benzetimi”. Journal of the Institute of Science and Technology 9/1 (March 2019), 30-38. https://doi.org/10.21597/jist.428412.
JAMA Babacan Y, Yesıl A. MOSFET tabanlı kayıplı Endüktans benzetimi. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:30–38.
MLA Babacan, Yunus and Abdullah Yesıl. “MOSFET Tabanlı kayıplı Endüktans Benzetimi”. Journal of the Institute of Science and Technology, vol. 9, no. 1, 2019, pp. 30-38, doi:10.21597/jist.428412.
Vancouver Babacan Y, Yesıl A. MOSFET tabanlı kayıplı Endüktans benzetimi. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(1):30-8.