Research Article
BibTex RIS Cite

Fotovoltaik İnce Film Olarak Elektrokimyasal Depozit Edilmiş Cu-Grafen ve Cu2O-Grafen Nanokompozitler

Year 2018, , 201 - 209, 30.09.2018
https://doi.org/10.21597/jist.458627

Abstract

Bu çalışmada, Au ve indiyum kalay oksit (ITO) elektrotlarda bakır iyonlarının ve grafen oksitin sulu
süspansiyonlarından eş zamanlı olarak indirgemesine dayanan Cu-grafen ve Cu2O-grafen nanoyapılarının
elektrokimyasal büyümesine yeni bir yaklaşım sunulmaktadır. Elde edilen kompozit nanoyapılar, taramalı elektron
mikroskobu (SEM), enerji dağılımlı spektroskopi (EDS), X-ışını kırınımı (XRD), fotolüminesans spektroskopi
(PL) ve foto-akım ölçümleri ile karakterize edildi. Deney sonuçları, Cu-grafen ve Cu2O-grafen kompozit film
yapılarının, uygulanan potansiyel ve deney ortamı ile kolayca kontrol edilebildiğini göstermektedir. Sentezlenen
Cu-grafen ve Cu2O-grafen nanokompozit fotoelektrotlar; iyi fotovoltaik özellikler sergilerler ve güneş enerjisi
dönüşümündeki uygulamalar için kullanılabilirler.

References

  • An X, Li K, Tang J, 2014. Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2. ChemSusChem ., 7: 1086–1093.
  • Chen X, Mao SS, 2007. Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chem. Rev., 107: 2891–2959.
  • Chen M, Park C, Choi J, Oh W, 2011. Synthesis and characterization of metal (Pt, Pd and Fe)-graphene composites. J.Korean Ceramic Soc., 48 (2): 147-151.
  • Desimoni E, Brunetti B, 2015. X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review. Chemosensors, 3: 70-117.
  • Fujishima A, Honda K, 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238: 37–38.
  • Fujishima A, Zhang X, Tryk DA, 2008. TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63: 515–582.
  • Gao D, Zhang J, Zhu J, Qi J, Zhang Z, Sui W, Shi H, Xue D, 2010. Vacancy-mediated magnetism in pure copper oxide nanoparticles. Nanoscale Res Lett., 5: 769–772.
  • Gao L, Guest JR, Guisinger NP, 2010. Epitaxial graphene on Cu (111). Nano Lett., 10: 3512-3516.
  • Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS, 2006. New interpretations of XPS spectra of nickel metal and oxides. Surface Sci., 600, 1771-1779.
  • Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo J N, Domen K, 1998. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun., 357-358.
  • Jongh PE, Vanmaekelbergh D, Kelly JJ, 2000. Photoelectrochemistry of electrodeposited Cu2O. J.Electrochem.Soc., 147(2): 486-489.
  • Ma J, Yuan T, He Y, Wang J, Zhang W, Yang D, Liao X, Ma Z, 2014. A novel graphene sheet-wrapped Co2(OH)3Cl composite as a long-life anode material for lithium ion batteries. J. Mater. Chem. A, 2:16925-16930.
  • Nakata K, Fujishima A, 2012. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C: Photochemistry Reviews, 13: 169–189.
  • Öztürk Doğan H, Ekinci D, Demir Ü, 2013. Atomic scale imaging and spectroscopic characterization of electrochemically reduced graphene oxide. Surface Science, 611: 54–59.
  • Pendashteh A, Mousavi MF, Rahmanifar MS, 2013. Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheers via an electrostatic coprecipitation and its application as supercapacitor. Electrochim.Acta, 88: 347-357.
  • Qian Y, Ye F, Xu J, Le Z, 2012. Synthesis of cuprous oxide (Cu2O) nanoparticles/graphene composite with an excellent electrocatalytic activity towards glucose. Int. J. Electrochem. Sci., 7: 10063 – 10073.
  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A, 2009. Graphene: The new two-dimensional nanomaterial. Angew. Chem., Int. Ed., 48: 7752-7777.
  • Sreeprasad TS, Samal AK, Pradeep T, 2009. Tellurium nanowire-induced room temperature conversion of graphite oxide to leaf-like graphenic structures. J.Phys.Chem C, 113 (5): 1727-1737.
  • Stankovich S, Dikin DA, Dommett GHB., Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, 2006. Graphene-based composite materials. Nature, 442: 282–286.
  • Sun Y, Wu Q, Shi G, 2011. Graphene based new energy materials. Energy Environ. Sci., 4: 1113-1132.
  • Tian J, Li H, Xing Z, Wang L, Luo Y, Asiri AM, Al-Youbi AO, Sun X, 2012. One-pot green hydrothermal synthesis of CuO–Cu2O–Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation. Catal. Sci. Technol., 2: 2227–2230.
  • Wang Y, Wen Z, Zhang H, Cao G, Sun Q, Cao J, 2016. CuO Nanorods-Decorated Reduced Graphene Oxide Nanocatalysts for Catalytic Oxidation of CO. Catalysts, 6(12): 214-222.
  • Xie G, Forslund M, Pan J, 2014. Direct Electrochemical Synthesis of Reduced Graphene Oxide (rGO)/Copper Composite Films and Their Electrical/Electroactive Properties. Appl. Mater. Interfaces, 6 (10): 7444–7455.
  • Zhang F, Li Y, Gu Y, Wang Z, Wang C, 2011. One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta, 173: 103-109.

Electrochemically Deposited Cu-Graphene and Cu2O-Graphene Nanocomposites for Thin Film Photovoltaics

Year 2018, , 201 - 209, 30.09.2018
https://doi.org/10.21597/jist.458627

Abstract

In this study, we present a new approach to electrochemical growth of Cu-graphene and Cu2Ographene

nanostructures that are based on simultaneous reduction of copper ions and graphene oxide from an

aqueous suspension on Au and indium tin oxide (ITO) electrodes. The obtained composite nanostructures were

characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction

(XRD), photoluminescence spectroscopy (PL), and photocurrent measurements. The experimental results show

that structures of Cu-graphene and Cu2O-graphene composite films can be easily controlled by application potential

and experimental media. The resulting Cu-graphene and Cu2O-graphene nanocomposites photoelectrodes exhibits

good photovoltaic properties and could be used for applications in solar energy conversion.

References

  • An X, Li K, Tang J, 2014. Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2. ChemSusChem ., 7: 1086–1093.
  • Chen X, Mao SS, 2007. Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chem. Rev., 107: 2891–2959.
  • Chen M, Park C, Choi J, Oh W, 2011. Synthesis and characterization of metal (Pt, Pd and Fe)-graphene composites. J.Korean Ceramic Soc., 48 (2): 147-151.
  • Desimoni E, Brunetti B, 2015. X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review. Chemosensors, 3: 70-117.
  • Fujishima A, Honda K, 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238: 37–38.
  • Fujishima A, Zhang X, Tryk DA, 2008. TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63: 515–582.
  • Gao D, Zhang J, Zhu J, Qi J, Zhang Z, Sui W, Shi H, Xue D, 2010. Vacancy-mediated magnetism in pure copper oxide nanoparticles. Nanoscale Res Lett., 5: 769–772.
  • Gao L, Guest JR, Guisinger NP, 2010. Epitaxial graphene on Cu (111). Nano Lett., 10: 3512-3516.
  • Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS, 2006. New interpretations of XPS spectra of nickel metal and oxides. Surface Sci., 600, 1771-1779.
  • Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo J N, Domen K, 1998. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun., 357-358.
  • Jongh PE, Vanmaekelbergh D, Kelly JJ, 2000. Photoelectrochemistry of electrodeposited Cu2O. J.Electrochem.Soc., 147(2): 486-489.
  • Ma J, Yuan T, He Y, Wang J, Zhang W, Yang D, Liao X, Ma Z, 2014. A novel graphene sheet-wrapped Co2(OH)3Cl composite as a long-life anode material for lithium ion batteries. J. Mater. Chem. A, 2:16925-16930.
  • Nakata K, Fujishima A, 2012. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C: Photochemistry Reviews, 13: 169–189.
  • Öztürk Doğan H, Ekinci D, Demir Ü, 2013. Atomic scale imaging and spectroscopic characterization of electrochemically reduced graphene oxide. Surface Science, 611: 54–59.
  • Pendashteh A, Mousavi MF, Rahmanifar MS, 2013. Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheers via an electrostatic coprecipitation and its application as supercapacitor. Electrochim.Acta, 88: 347-357.
  • Qian Y, Ye F, Xu J, Le Z, 2012. Synthesis of cuprous oxide (Cu2O) nanoparticles/graphene composite with an excellent electrocatalytic activity towards glucose. Int. J. Electrochem. Sci., 7: 10063 – 10073.
  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A, 2009. Graphene: The new two-dimensional nanomaterial. Angew. Chem., Int. Ed., 48: 7752-7777.
  • Sreeprasad TS, Samal AK, Pradeep T, 2009. Tellurium nanowire-induced room temperature conversion of graphite oxide to leaf-like graphenic structures. J.Phys.Chem C, 113 (5): 1727-1737.
  • Stankovich S, Dikin DA, Dommett GHB., Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, 2006. Graphene-based composite materials. Nature, 442: 282–286.
  • Sun Y, Wu Q, Shi G, 2011. Graphene based new energy materials. Energy Environ. Sci., 4: 1113-1132.
  • Tian J, Li H, Xing Z, Wang L, Luo Y, Asiri AM, Al-Youbi AO, Sun X, 2012. One-pot green hydrothermal synthesis of CuO–Cu2O–Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation. Catal. Sci. Technol., 2: 2227–2230.
  • Wang Y, Wen Z, Zhang H, Cao G, Sun Q, Cao J, 2016. CuO Nanorods-Decorated Reduced Graphene Oxide Nanocatalysts for Catalytic Oxidation of CO. Catalysts, 6(12): 214-222.
  • Xie G, Forslund M, Pan J, 2014. Direct Electrochemical Synthesis of Reduced Graphene Oxide (rGO)/Copper Composite Films and Their Electrical/Electroactive Properties. Appl. Mater. Interfaces, 6 (10): 7444–7455.
  • Zhang F, Li Y, Gu Y, Wang Z, Wang C, 2011. One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta, 173: 103-109.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Hülya Öztürk Doğan 0000-0002-4072-7744

Tuba Öznülüer This is me 0000-0002-4072-7744

Ümit Demir This is me 0000-0002-4072-7744

Publication Date September 30, 2018
Submission Date December 12, 2017
Acceptance Date April 8, 2018
Published in Issue Year 2018

Cite

APA Doğan, H. Ö., Öznülüer, T., & Demir, Ü. (2018). Fotovoltaik İnce Film Olarak Elektrokimyasal Depozit Edilmiş Cu-Grafen ve Cu2O-Grafen Nanokompozitler. Journal of the Institute of Science and Technology, 8(3), 201-209. https://doi.org/10.21597/jist.458627
AMA Doğan HÖ, Öznülüer T, Demir Ü. Fotovoltaik İnce Film Olarak Elektrokimyasal Depozit Edilmiş Cu-Grafen ve Cu2O-Grafen Nanokompozitler. Iğdır Üniv. Fen Bil Enst. Der. September 2018;8(3):201-209. doi:10.21597/jist.458627
Chicago Doğan, Hülya Öztürk, Tuba Öznülüer, and Ümit Demir. “Fotovoltaik İnce Film Olarak Elektrokimyasal Depozit Edilmiş Cu-Grafen Ve Cu2O-Grafen Nanokompozitler”. Journal of the Institute of Science and Technology 8, no. 3 (September 2018): 201-9. https://doi.org/10.21597/jist.458627.
EndNote Doğan HÖ, Öznülüer T, Demir Ü (September 1, 2018) Fotovoltaik İnce Film Olarak Elektrokimyasal Depozit Edilmiş Cu-Grafen ve Cu2O-Grafen Nanokompozitler. Journal of the Institute of Science and Technology 8 3 201–209.
IEEE H. Ö. Doğan, T. Öznülüer, and Ü. Demir, “Fotovoltaik İnce Film Olarak Elektrokimyasal Depozit Edilmiş Cu-Grafen ve Cu2O-Grafen Nanokompozitler”, Iğdır Üniv. Fen Bil Enst. Der., vol. 8, no. 3, pp. 201–209, 2018, doi: 10.21597/jist.458627.
ISNAD Doğan, Hülya Öztürk et al. “Fotovoltaik İnce Film Olarak Elektrokimyasal Depozit Edilmiş Cu-Grafen Ve Cu2O-Grafen Nanokompozitler”. Journal of the Institute of Science and Technology 8/3 (September 2018), 201-209. https://doi.org/10.21597/jist.458627.
JAMA Doğan HÖ, Öznülüer T, Demir Ü. Fotovoltaik İnce Film Olarak Elektrokimyasal Depozit Edilmiş Cu-Grafen ve Cu2O-Grafen Nanokompozitler. Iğdır Üniv. Fen Bil Enst. Der. 2018;8:201–209.
MLA Doğan, Hülya Öztürk et al. “Fotovoltaik İnce Film Olarak Elektrokimyasal Depozit Edilmiş Cu-Grafen Ve Cu2O-Grafen Nanokompozitler”. Journal of the Institute of Science and Technology, vol. 8, no. 3, 2018, pp. 201-9, doi:10.21597/jist.458627.
Vancouver Doğan HÖ, Öznülüer T, Demir Ü. Fotovoltaik İnce Film Olarak Elektrokimyasal Depozit Edilmiş Cu-Grafen ve Cu2O-Grafen Nanokompozitler. Iğdır Üniv. Fen Bil Enst. Der. 2018;8(3):201-9.