Research Article
BibTex RIS Cite

Absolute Summability Factors Related to the Summability Method |𝑵̅,𝒑𝒏, 𝜽|(𝝁)

Year 2019, , 1606 - 1611, 01.09.2019
https://doi.org/10.21597/jist.507772

Abstract

By (𝐴,𝐵), we denote the set of all sequences 𝜖 such that Σ𝑎𝑛𝜖𝑛 is summable 𝐵 whenever Σ𝑎𝑛 is summable 𝐴 where 𝐴 and 𝐵 are two summability methods. In this study, applying the main theorems in (Gökçe and Sarıgöl, 2018) to summability factors, we characterize the sets (|𝑁̅,𝑝𝑛,𝜃|(𝜇),|𝑁̅,𝑞𝑛|) and (|𝑁̅,𝑝𝑛,𝜃|(𝜇),|𝑁̅,𝑞𝑛,𝜓|(𝜆)). Also, in the special case, we get some well-known results.

References

  • Gökçe F, Sarıgöl M A, 2018. A new series space |N ̅_P^θ |(μ) and matrix transformations with applications. Kuwait Journal of Science, 45(4): 1-8.
  • Grosse-Erdmann KG, 1993. Matrix transformations between the sequence spaces of Maddox. Journal of Mathematical Analysis and Applications, 180(1): 223-238.
  • Mitrinovic DS, 1970. Analytic Inequalties. Springer-Verlag, Berlin.
  • Orhan C, Sarıgöl MA, 1993. On absolute weighted mean summability. The Rocky Mountain Journal of Mathematics, 23(3): 1091-1097.
  • Sarıgöl MA, 2016. Norms and compactness of operators on absolute weighted mean summable series. Kuwait Journal of Science, 43(4): 68-74.
  • Sarıgöl MA, 2013. An inequality for matrix operators and its applications. Journal of Classical Analysis, 2(2): 145-150.
  • Sarıgöl MA, 2011. Matrix transformatins on fields of absolute weighted mean summability. Studia Scientiarum Mathematicarum Hungarica, 48(3): 331-341.
  • Sarıgöl MA, Bor H, 1995. Characterization of absolute summability factors. Journal of Mathematical Analysis and Applications, 195 (2): 537-545.

|𝑵̅, 𝒑𝒏, 𝜽|(𝝁) Toplanabilme Metodu ile İlgili Mutlak Toplanabilme Çarpanları

Year 2019, , 1606 - 1611, 01.09.2019
https://doi.org/10.21597/jist.507772

Abstract

𝐴 ve 𝐵 iki toplanabilme metodu olmak üzere Σ𝑎𝑛, 𝐴 toplanabilir iken Σ𝑎𝑛𝜖𝑛, 𝐵 toplanabilir olacak şekildeki bütün 𝜖 dizilerinin kümesi (𝐴,𝐵) ile gösterilir ve 𝜖 dizisine toplanabilme çarpanı adı verilir. Bu çalışmada, (Gökçe ve Sarıgöl, 2018) tarafından verilen teoremler yardımıyla (|𝑁̅,𝑝𝑛,𝜃|(𝜇),|𝑁̅,𝑞𝑛|) ve (|𝑁̅,𝑝𝑛,𝜃|(𝜇),|𝑁̅,𝑞𝑛,𝜑|(𝜆)) toplanabilme çarpanları kümeleri karakterize edilmiştir. Ayrıca özel durumlarda, bilinen bazı sonuçlar elde edilmiştir.

References

  • Gökçe F, Sarıgöl M A, 2018. A new series space |N ̅_P^θ |(μ) and matrix transformations with applications. Kuwait Journal of Science, 45(4): 1-8.
  • Grosse-Erdmann KG, 1993. Matrix transformations between the sequence spaces of Maddox. Journal of Mathematical Analysis and Applications, 180(1): 223-238.
  • Mitrinovic DS, 1970. Analytic Inequalties. Springer-Verlag, Berlin.
  • Orhan C, Sarıgöl MA, 1993. On absolute weighted mean summability. The Rocky Mountain Journal of Mathematics, 23(3): 1091-1097.
  • Sarıgöl MA, 2016. Norms and compactness of operators on absolute weighted mean summable series. Kuwait Journal of Science, 43(4): 68-74.
  • Sarıgöl MA, 2013. An inequality for matrix operators and its applications. Journal of Classical Analysis, 2(2): 145-150.
  • Sarıgöl MA, 2011. Matrix transformatins on fields of absolute weighted mean summability. Studia Scientiarum Mathematicarum Hungarica, 48(3): 331-341.
  • Sarıgöl MA, Bor H, 1995. Characterization of absolute summability factors. Journal of Mathematical Analysis and Applications, 195 (2): 537-545.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Matematik / Mathematics
Authors

Fadime Gökçe 0000-0003-1819-3317

Publication Date September 1, 2019
Submission Date January 3, 2019
Acceptance Date March 27, 2019
Published in Issue Year 2019

Cite

APA Gökçe, F. (2019). Absolute Summability Factors Related to the Summability Method |𝑵̅,𝒑𝒏, 𝜽|(𝝁). Journal of the Institute of Science and Technology, 9(3), 1606-1611. https://doi.org/10.21597/jist.507772
AMA Gökçe F. Absolute Summability Factors Related to the Summability Method |𝑵̅,𝒑𝒏, 𝜽|(𝝁). Iğdır Üniv. Fen Bil Enst. Der. September 2019;9(3):1606-1611. doi:10.21597/jist.507772
Chicago Gökçe, Fadime. “Absolute Summability Factors Related to the Summability Method |𝑵̅,𝒑𝒏, 𝜽|(𝝁)”. Journal of the Institute of Science and Technology 9, no. 3 (September 2019): 1606-11. https://doi.org/10.21597/jist.507772.
EndNote Gökçe F (September 1, 2019) Absolute Summability Factors Related to the Summability Method |𝑵̅,𝒑𝒏, 𝜽|(𝝁). Journal of the Institute of Science and Technology 9 3 1606–1611.
IEEE F. Gökçe, “Absolute Summability Factors Related to the Summability Method |𝑵̅,𝒑𝒏, 𝜽|(𝝁)”, Iğdır Üniv. Fen Bil Enst. Der., vol. 9, no. 3, pp. 1606–1611, 2019, doi: 10.21597/jist.507772.
ISNAD Gökçe, Fadime. “Absolute Summability Factors Related to the Summability Method |𝑵̅,𝒑𝒏, 𝜽|(𝝁)”. Journal of the Institute of Science and Technology 9/3 (September 2019), 1606-1611. https://doi.org/10.21597/jist.507772.
JAMA Gökçe F. Absolute Summability Factors Related to the Summability Method |𝑵̅,𝒑𝒏, 𝜽|(𝝁). Iğdır Üniv. Fen Bil Enst. Der. 2019;9:1606–1611.
MLA Gökçe, Fadime. “Absolute Summability Factors Related to the Summability Method |𝑵̅,𝒑𝒏, 𝜽|(𝝁)”. Journal of the Institute of Science and Technology, vol. 9, no. 3, 2019, pp. 1606-11, doi:10.21597/jist.507772.
Vancouver Gökçe F. Absolute Summability Factors Related to the Summability Method |𝑵̅,𝒑𝒏, 𝜽|(𝝁). Iğdır Üniv. Fen Bil Enst. Der. 2019;9(3):1606-11.