Second Order Fuzzy Boundary Value Problem with Fuzzy Parameter
Year 2020,
, 584 - 594, 01.03.2020
Nihat Altınışık
Tahir Ceylan
Abstract
In this article two point fuzzy boundary value problem is examined under the approach generalized Hukuhara differentiability (gH-differentiability). There are four different solutions for the problem by using a generalized differentiability. These solutions are analyzed separately and the results are presented. The method's applicability is illustrated with an example.
References
- Armand A, Gouyandeh Z, 2013. Solving two-point fuzzy boundary problem using iteration method. Communications on Advanced Computational Science with Applications, 1-10.
- Bede B, Gal SG, 2005. Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation. Fuzzy Sets and Systems, 151: 581–599.
- Bede B, Stefanini L, 2012. Generalized differentiability of fuzzy-valued functions. Fuzzy Sets and Systems. 230: 119-141.
- Diamond P, Kloeden P, 1994. Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore.
- Dubois D, Prade H, 1980. Fuzzy Sets and Systems. Theory and Aplications, Academic Press, New York.
- Goetschel J, Voxman W, 1986. Elementary fuzzy calculus. Fuzzy Sets and Systems, 18(1): 31-43.
- Gomes LT, Barros LC, Bede B, 2010. Fuzzy Differential Equations in Various Approaches. pp.120, London.
- Gültekin H, Altınışık N, 2014. On boundary value problems for second-order fuzzy linear differential equations with constant coefficients. Journal of Advances in Mathematics, 8(3): 1614-1631.
- Gültekin H, Altınışık N, 2014. On solution of two-point fuzzy boundary value problems. Bulletin of Society for Mathematical Services & Standarts, 11: 31-39.
- Gültekin Çitil H, 2018. Comparison results of linear differential equations with fuzzy boundary values. Journal of Science and Arts, 1(42): 33-48.
- Hukuhara M, 1967. Integration des applications mesurables dont la valeur est un compact convex. Funkcialaj Ekvacioj, 10: 205–229.
- Kaleva O, 1987. Fuzzy differetial equations. Fuzzy Sets and Systems, 24: 301-317.
- Kaleva O, Seikkala S, 1984. On fuzzy metric spaces. Fuzzy Sets and Systems, 12: 215-229.
- Khastan A, Nieto JJ, 2010. A boundary value problem for second order differential equations. Nonlinear Analysis, 72: 43-54.
- Klir GJ, Yuan B, 1995. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall PTR, Upper Saddle River, New Jersey.
- MATLAB, 2016. Fuzzy Logic Toolbox Version. R2016a.
- Nasseri H, 2008. Fuzzy Numbers: Positive and Nonnegative. International Mathematical Forum, 3: 1777-1780.
- Puri. M, Ralescu D, 1983. Differential and fuzzy functions. Journal of Mathematical Analysis and Applications, 91: 552–558.
- Zadeh LA, 1965. Fuzzy sets. Information and Control, 8(3): 338–353.
Bulanık Parametreli İkinci Mertebeden Bulanık Sınır Değer Problemi
Year 2020,
, 584 - 594, 01.03.2020
Nihat Altınışık
Tahir Ceylan
Abstract
Bu makalede iki nokta sınır değer problemi genelleştirilmiş Hukuhara türevi (gh-türev) ile incelenmiştir. Bu yöntemin dört farklı çözümü vardır. Bu çözümler ayrı ayrı incelenerek elde edilen sonuçlar sunulmuştur. Yöntemin uygulanabilirliği bir örnekle gösterilmiştir.
References
- Armand A, Gouyandeh Z, 2013. Solving two-point fuzzy boundary problem using iteration method. Communications on Advanced Computational Science with Applications, 1-10.
- Bede B, Gal SG, 2005. Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation. Fuzzy Sets and Systems, 151: 581–599.
- Bede B, Stefanini L, 2012. Generalized differentiability of fuzzy-valued functions. Fuzzy Sets and Systems. 230: 119-141.
- Diamond P, Kloeden P, 1994. Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore.
- Dubois D, Prade H, 1980. Fuzzy Sets and Systems. Theory and Aplications, Academic Press, New York.
- Goetschel J, Voxman W, 1986. Elementary fuzzy calculus. Fuzzy Sets and Systems, 18(1): 31-43.
- Gomes LT, Barros LC, Bede B, 2010. Fuzzy Differential Equations in Various Approaches. pp.120, London.
- Gültekin H, Altınışık N, 2014. On boundary value problems for second-order fuzzy linear differential equations with constant coefficients. Journal of Advances in Mathematics, 8(3): 1614-1631.
- Gültekin H, Altınışık N, 2014. On solution of two-point fuzzy boundary value problems. Bulletin of Society for Mathematical Services & Standarts, 11: 31-39.
- Gültekin Çitil H, 2018. Comparison results of linear differential equations with fuzzy boundary values. Journal of Science and Arts, 1(42): 33-48.
- Hukuhara M, 1967. Integration des applications mesurables dont la valeur est un compact convex. Funkcialaj Ekvacioj, 10: 205–229.
- Kaleva O, 1987. Fuzzy differetial equations. Fuzzy Sets and Systems, 24: 301-317.
- Kaleva O, Seikkala S, 1984. On fuzzy metric spaces. Fuzzy Sets and Systems, 12: 215-229.
- Khastan A, Nieto JJ, 2010. A boundary value problem for second order differential equations. Nonlinear Analysis, 72: 43-54.
- Klir GJ, Yuan B, 1995. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall PTR, Upper Saddle River, New Jersey.
- MATLAB, 2016. Fuzzy Logic Toolbox Version. R2016a.
- Nasseri H, 2008. Fuzzy Numbers: Positive and Nonnegative. International Mathematical Forum, 3: 1777-1780.
- Puri. M, Ralescu D, 1983. Differential and fuzzy functions. Journal of Mathematical Analysis and Applications, 91: 552–558.
- Zadeh LA, 1965. Fuzzy sets. Information and Control, 8(3): 338–353.