Research Article
BibTex RIS Cite

Effect on Outdoor Thermal Comfort of the Distance Between the Building and The Trees: A Case Study Erzurum

Year 2020, , 1298 - 1307, 01.06.2020
https://doi.org/10.21597/jist.635503

Abstract

The increasing heat island effect caused by urbanization has led to an increase in energy demand. Often the cooling effects of trees are emphasized. However, the contribution of trees to the warming of the environment for cold climatic zones should also be examined. This research; In the city of Erzurum, where there are high altitude and cold climatic conditions, it was carried out in the site garden of Yıldızkent, a new settlement area. This site consists of 16 villas. On the ground floor of a house with existing plants, two meteorological data measuring devices were placed on the south and north sides. In December 2017, 24-hour microclimate data were recorded from the research area and the ENVI-met software program was used for scenarios with average values. In these scenarios, the effect of different distances of the building with trees on thermal comfort was investigated. Distances; adjacent to the building, 2m and 4m, the scenario was analyzed which was comfortable. According to the results of the analysis, when the distance between trees and building is 2m, the temperature of the environment is 9.2 ° C warmer than the current situation. Estimated Average Votes (PMV) analysis of the data is used to create maps for current situation and alternative scenarios. As a result, thermal comfort and thermal stress are the scenarios in which the plants are planted at 2m and 4m intervals and 0.2-0.3 ° C PMV value is determined.

References

  • Akbari H, Kurn DM, Bretz SE, Hanford JW, 1997. Peak power and cooling energy savings of shade trees. Energy and Buildings, 25(2): 139-148.
  • Anonymous, 2004. Task Committee on Outdoor Human Comfort of the Aerodynamics, Committee of the American Society of Civil Engineers. Outdoor human comfort and its assessment: State of the art. Reston, VA: American Society of Civil Engineers.
  • Balczó M, Gromke C, Ruck B, 2009. Numerical modeling of flow and pollutant dispersion in street canyons with tree planting. Meteorologische Zeitschrift, 18(2): 197-206.
  • Balogun AA, Morakinyo TE, Adegun OB, 2014. Effect of tree-shading on energy demand of two similar buildings. Energy and buildings, 81, 305-315.
  • Bruse M, Fleer H, 1998. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental modelling & software, 13:(3-4), 373-384.
  • Chen K, Zhou L, Chen X, Ma Z, Liu Y, Huang L, Kinney PL, 2016. Urbanization level and vulnerability to heat-related mortality in Jiangsu Province. China. Environmental health perspectives, 124 (12): 1863-1869.
  • Cheng V, Ng E, Chan C, Givoni B, 2012. Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong”. International journal of biometeorology, 56 (1): 43-56.
  • Daemei AB, Azmoodeh M, Zamani Z, Khotbehsara EM, 2018. Experimental and simulation studies on the thermal behavior of vertical greenery system for temperature mitigation in urban spaces”. Journal of Building Engineering, 20, 277-284.
  • Decker EH, Elliott S, Smith FA, Blake DR, Rowland FS, 2000. Energy and material flow through the urban ecosystem. Annual review of energy and the environment, 25.
  • Donovan GH, Butry DT, 2009. The value of shade: Estimating the effect of urban trees on summertime electricity use. Energy and Buildings, 41(6): 662-668.
  • Ekici C, 2013. PMV Metodu ile Isıl Konfor Ölçümü ve Hesaplanması. VIII. Ulusal Ölçüm Bilim Kong, Gebze/Kocaeli, Türkiye. 26-28 Eylül 2013.
  • Erell E, Pearlmutter D, Williamson T, 2012. Urban microclimate: designing the spaces between buildings. Routledge.
  • Fahmy M, Sharples S, 2009. On the development of an urban passive thermal comfort system in Cairo, Egypt. Building and Environment, 44(9): 1907-1916.
  • Fanger PO, 1970. Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering.
  • Gao J, Wang Y, Wargocki P, 2015. Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated buildings. Building and Environment, 92, 200-208.
  • Huang YJ, Akbari H, Taha H, 1990. The wind-shielding and shading effects of trees on residential heating and cooling requirements. Proc. American Society of Heating, Refrigeration, and Air Conditioning Engineers.
  • Höppe, P, 2002. Different aspects of assessing indoor and outdoor thermal comfort. Energy and buildings, 34(6), 661-665.
  • Irmak A, Yilmaz S, Mutlu E, Yılmaz H, 2018. Assessment of the effects of different tree species on urban microclimate. Environmental Science and Pollution Research,25(16): 15802–15822.
  • Johansson E, Thorsson S, Emmanuel R, Krüger E, 2014. Instruments and methods in outdoor thermal comfort studies–The need for standardization. Urban climate, 10: 346-366.
  • Khalil HA, EE, Ibrahim A, Elgendy N, Makhlouf N, 2018. Could/should improving the urban climate in informal areas of fast-growing cities be an integral part of upgrading processes? Cairo case. Urban climate, 24: 63-79.
  • Kjellstrom T, Holmer I, Lemke B, 2009. Workplace heat stress, health and productivity–an increasing challenge for low and middle-income countries during climate change. Global health action, 2(1): 2047.
  • Klemm W, Heusinkveld BG, Lenzholzer S, Jacobs M H, Van Hove B, 2015. Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Building and Environment, 83, 120-128.
  • Kolokotroni M, Giannitsaris I, Watkins R, 2006. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy 80(4), 383-392.
  • Lin TP, Matzarakis A, Hwang RL, 2010. Shading effect on long-term outdoor thermal comfort. Building and environment, 45(1): 213-221.
  • Lobaccaro G, Acero JA, 2015. Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 14, 251-267.
  • Matsuoka RH, Kaplan R, 2008. People needs in the urban landscape: analysis of landscape and urban planning contributions. Landscape and urban planning, 84(1): 7-19.
  • Matzarakis A, Mayer H, Iziomon MG, 1999. Applications of a universal thermal index: physiological equivalent temperature. International journal of biometeorology, 43(2): 76-84.
  • Middel A, Chhetri N, Quay R, 2015. Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban Forestry & Urban Greening, 14(1): 178-186.
  • Milošević DD, Bajšanski IV, Savić SM, 2017. Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban forestry & urban greening, 23, 113-124.
  • Mirzaei PA, Haghighat F, 2010. Approaches to study urban heat island–abilities and limitations. Building and Environment, 45(10): 2192-2201.
  • Müller N, Kuttler W, Barlag AB, 2014. Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and applied climatology, 115(1-2): 243-257.
  • Nagano K, Horikoshi T, 2011. New index indicating the universal and separate effects on human comfort under outdoor and non-uniform thermal conditions. Energy and Buildings, 43(7): 1694-1701.
  • Nikolopoulou M, Baker N, Steemers K, 2001. Thermal comfort in outdoor urban spaces: understanding the human parameter. Solar energy, 70 (3): 227-235.
  • Parker JH, 1983. Landscaping to reduce the energy used in cooling buildings. Journal of Forestry, 81(2): 82-105.
  • Tapias Pedraza, E. 2016. Climate-sensitive Urban Adaptation: Analysis of Qualitative and Quantitative Data of Outdoor Thermal Comfort in Barranquilla, Colombia (Doctoral dissertation, ETH Zurich).
  • Sarı EN, 2019. Hava Kirliliği ve Konut Dokusu Arasındaki İlişkinin Analizi: Erzurum Örneği. Yüksek Lisans Tezi, Atatürk Üniversitesi, Erzurum, Türkiye (Basılmış).
  • Sarrat C, Lemonsu A, Masson V, Guedalia D, 2006. Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment, 40 (10): 1743-1758.
  • Shashua‐Bar L, Potchter O, Bitan A, Boltansky D, Yaakov Y, 2010. Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv. Israel. International Journal of Climatology, 30 (1): 44-57.
  • Steemers K, 2003. Energy and the city: density, buildings and transport. Energy and buildings, 35 (1): 3-14.
  • Tan Z, Lau KKL, Ng E, 2016. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 114, 265-274.
  • Tang Z, Brody SD, Quinn C, Chang L, Wei T, 2010. Moving from agenda to action: evaluating local climate change action plans”. Journal of environmental planning and management, 53(1): 41-62.
  • Thorsson S, Lindqvist M, Lindqvist S, 2004. Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. International Journal of Biometeorology, 48(3): 149-156.
  • Tian G, Qiao Z, 2014. Assessing the impact of the urbanization process on net primary productivity in China in 1989–2000. Environmental pollution, 184, 320-326.
  • Toy S, Yilmaz S, 2010. Thermal sensation of people performing recreational activities in shadowy environment: a case study from Turkey. Theoredical and Applied Climatology, 101 (3-4): 329-343.
  • Tsoka S, Tsikaloudaki A, Theodosiou T, 2018. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications-a review. Sustainable Cities and Society, 43: 55-76.
  • Wang Y, Akbari H, 2016. The effects of street tree planting on Urban Heat Island mitigation in Montreal. Sustainable Cities and Society, 27, 122-128.
  • Wang Y, Bakker F, De Groot R, Wörtche H, 2014. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Building and environment, 77, 88-100.
  • Yang X, Zhao L, Bruse M, Meng Q, 2013. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Building and Environment, 60, 93-104.
  • Yezioro A, Capeluto I. G, Shaviv E, 2006. Design guidelines for appropriate insolation of urban squares. Renewable energy, 31(7): 1011-1023.
  • Yilmaz S, Mutlu E, Yılmaz H, 2018. Alternative Scenarios for Ecological Urbanizations Using Envi-Met Model. Environmental Science and Pollution Research, 25(26), 26307–26321.
  • Yilmaz S, Yilmaz H, Irmak MA, Kuzulugil AC, Koç A, 2017. Effects of Urban Pinus sylvestris (L.) Plantation Sites on Thermal Comfort. GREEN CITIES 2017 International Symposium on greener cities for more efficient ecosystem services in a climate changing world, Bologna, Italy, 12-15 September 2017.
  • Zittis G, Hadjinicolaou P, Fnais M, Lelieveld J, 2016. Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Regional Environmental Change, 16(7): 1863-1876.

Ağaçların Bina ile Olan Mesafesinin Dış Mekan Termal Konfor Üzerine Etkisi: Erzurum Kenti Örneği

Year 2020, , 1298 - 1307, 01.06.2020
https://doi.org/10.21597/jist.635503

Abstract

Kentleşmeyle birlikte artan kentsel ısı adası etkisi sıcak iklim bölgelerinde yazın daha fazla serinletme, soğuk iklim bölgerinde ise kışın daha fazla ısıtma talebiyle enerji kullanımının artmasına sebep olmuştur. Son yıllarda güneş enerjisinden en üst seviyede faydalanarak enerji tasarrufu sağlama, hava kirliliğini azaltmak için çözümler üretme, ısıtma ve soğutma maliyetlerini azaltmak için öneriler sunma ile ilgili birçok çalışma yapılmaktadır. Kentlerdeki yeşil alan varlığının fazla olması yansımayı azaltacağı için ısı adası etkisini de azaltmaktadır. Yapılan çalışmalarda genellikle ağaçların soğutma etkileri vurgulanmaktadır. Ancak soğuk iklim bölgeleri için ağaçların ortamın ısınmasına olan katkıları da incelenmelidir. Bu araştırma; yüksek rakım ve soğuk iklim şartlarının hakim olduğu Erzurum kentinde, yeni bir yerleşim alanı olan Yıldızkent mevkiinde bulunan bir site bahçesinde yürütülmüştür. Bu site 16 adet villadan oluşmaktadır. Bu alanda, çevresinde bitki örtüsü bulunan bir evin birinci katına, güney ve kuzey cephelere 2 adet meteorolojik veri ölçüm cihazı yerleştirilmiştir. Aralık 2017’de araştırma alanından 24 saatlik mikroiklim verileri kaydedilmiş olup, ortalama değerleri hazırlanan senaryolar için ENVI-met yazılım programı kullanılmıştır. Bu senaryolarda, binanın ağaçlar ile olan farklı mesafelerinin termal konfor üzerindeki etkisi araştırılmıştır. Mesafeler; binaya bitişik, 2m ve 4m olarak belirlenerek, hangi senaryonun konforlu olduğu analiz edilmiştir. Analiz sonuçlarına göre, ağaçlar ve bina arasındaki mesafe 2m olduğunda, ortamın sıcaklığının mevcut durumdan 9.2 °C daha sıcak olduğu belirlenmiştir. Verilere ait Tahmini Ortalama Oy (PMV) analizi ile insanlar tarafından hissedilir mevcut durum ve alternatif senaryolar için haritalar oluşturulmuştur. Sonuç olarak termal konforlu ve termal stresin olmadığı durum bitkilerin binaya 2m ve 4m aralıklarla dikildiği senaryolar olup, 0.2-0.3 °C PMV değeri belirlenmiştir.

References

  • Akbari H, Kurn DM, Bretz SE, Hanford JW, 1997. Peak power and cooling energy savings of shade trees. Energy and Buildings, 25(2): 139-148.
  • Anonymous, 2004. Task Committee on Outdoor Human Comfort of the Aerodynamics, Committee of the American Society of Civil Engineers. Outdoor human comfort and its assessment: State of the art. Reston, VA: American Society of Civil Engineers.
  • Balczó M, Gromke C, Ruck B, 2009. Numerical modeling of flow and pollutant dispersion in street canyons with tree planting. Meteorologische Zeitschrift, 18(2): 197-206.
  • Balogun AA, Morakinyo TE, Adegun OB, 2014. Effect of tree-shading on energy demand of two similar buildings. Energy and buildings, 81, 305-315.
  • Bruse M, Fleer H, 1998. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental modelling & software, 13:(3-4), 373-384.
  • Chen K, Zhou L, Chen X, Ma Z, Liu Y, Huang L, Kinney PL, 2016. Urbanization level and vulnerability to heat-related mortality in Jiangsu Province. China. Environmental health perspectives, 124 (12): 1863-1869.
  • Cheng V, Ng E, Chan C, Givoni B, 2012. Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong”. International journal of biometeorology, 56 (1): 43-56.
  • Daemei AB, Azmoodeh M, Zamani Z, Khotbehsara EM, 2018. Experimental and simulation studies on the thermal behavior of vertical greenery system for temperature mitigation in urban spaces”. Journal of Building Engineering, 20, 277-284.
  • Decker EH, Elliott S, Smith FA, Blake DR, Rowland FS, 2000. Energy and material flow through the urban ecosystem. Annual review of energy and the environment, 25.
  • Donovan GH, Butry DT, 2009. The value of shade: Estimating the effect of urban trees on summertime electricity use. Energy and Buildings, 41(6): 662-668.
  • Ekici C, 2013. PMV Metodu ile Isıl Konfor Ölçümü ve Hesaplanması. VIII. Ulusal Ölçüm Bilim Kong, Gebze/Kocaeli, Türkiye. 26-28 Eylül 2013.
  • Erell E, Pearlmutter D, Williamson T, 2012. Urban microclimate: designing the spaces between buildings. Routledge.
  • Fahmy M, Sharples S, 2009. On the development of an urban passive thermal comfort system in Cairo, Egypt. Building and Environment, 44(9): 1907-1916.
  • Fanger PO, 1970. Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering.
  • Gao J, Wang Y, Wargocki P, 2015. Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated buildings. Building and Environment, 92, 200-208.
  • Huang YJ, Akbari H, Taha H, 1990. The wind-shielding and shading effects of trees on residential heating and cooling requirements. Proc. American Society of Heating, Refrigeration, and Air Conditioning Engineers.
  • Höppe, P, 2002. Different aspects of assessing indoor and outdoor thermal comfort. Energy and buildings, 34(6), 661-665.
  • Irmak A, Yilmaz S, Mutlu E, Yılmaz H, 2018. Assessment of the effects of different tree species on urban microclimate. Environmental Science and Pollution Research,25(16): 15802–15822.
  • Johansson E, Thorsson S, Emmanuel R, Krüger E, 2014. Instruments and methods in outdoor thermal comfort studies–The need for standardization. Urban climate, 10: 346-366.
  • Khalil HA, EE, Ibrahim A, Elgendy N, Makhlouf N, 2018. Could/should improving the urban climate in informal areas of fast-growing cities be an integral part of upgrading processes? Cairo case. Urban climate, 24: 63-79.
  • Kjellstrom T, Holmer I, Lemke B, 2009. Workplace heat stress, health and productivity–an increasing challenge for low and middle-income countries during climate change. Global health action, 2(1): 2047.
  • Klemm W, Heusinkveld BG, Lenzholzer S, Jacobs M H, Van Hove B, 2015. Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Building and Environment, 83, 120-128.
  • Kolokotroni M, Giannitsaris I, Watkins R, 2006. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy 80(4), 383-392.
  • Lin TP, Matzarakis A, Hwang RL, 2010. Shading effect on long-term outdoor thermal comfort. Building and environment, 45(1): 213-221.
  • Lobaccaro G, Acero JA, 2015. Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 14, 251-267.
  • Matsuoka RH, Kaplan R, 2008. People needs in the urban landscape: analysis of landscape and urban planning contributions. Landscape and urban planning, 84(1): 7-19.
  • Matzarakis A, Mayer H, Iziomon MG, 1999. Applications of a universal thermal index: physiological equivalent temperature. International journal of biometeorology, 43(2): 76-84.
  • Middel A, Chhetri N, Quay R, 2015. Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban Forestry & Urban Greening, 14(1): 178-186.
  • Milošević DD, Bajšanski IV, Savić SM, 2017. Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban forestry & urban greening, 23, 113-124.
  • Mirzaei PA, Haghighat F, 2010. Approaches to study urban heat island–abilities and limitations. Building and Environment, 45(10): 2192-2201.
  • Müller N, Kuttler W, Barlag AB, 2014. Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and applied climatology, 115(1-2): 243-257.
  • Nagano K, Horikoshi T, 2011. New index indicating the universal and separate effects on human comfort under outdoor and non-uniform thermal conditions. Energy and Buildings, 43(7): 1694-1701.
  • Nikolopoulou M, Baker N, Steemers K, 2001. Thermal comfort in outdoor urban spaces: understanding the human parameter. Solar energy, 70 (3): 227-235.
  • Parker JH, 1983. Landscaping to reduce the energy used in cooling buildings. Journal of Forestry, 81(2): 82-105.
  • Tapias Pedraza, E. 2016. Climate-sensitive Urban Adaptation: Analysis of Qualitative and Quantitative Data of Outdoor Thermal Comfort in Barranquilla, Colombia (Doctoral dissertation, ETH Zurich).
  • Sarı EN, 2019. Hava Kirliliği ve Konut Dokusu Arasındaki İlişkinin Analizi: Erzurum Örneği. Yüksek Lisans Tezi, Atatürk Üniversitesi, Erzurum, Türkiye (Basılmış).
  • Sarrat C, Lemonsu A, Masson V, Guedalia D, 2006. Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment, 40 (10): 1743-1758.
  • Shashua‐Bar L, Potchter O, Bitan A, Boltansky D, Yaakov Y, 2010. Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv. Israel. International Journal of Climatology, 30 (1): 44-57.
  • Steemers K, 2003. Energy and the city: density, buildings and transport. Energy and buildings, 35 (1): 3-14.
  • Tan Z, Lau KKL, Ng E, 2016. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 114, 265-274.
  • Tang Z, Brody SD, Quinn C, Chang L, Wei T, 2010. Moving from agenda to action: evaluating local climate change action plans”. Journal of environmental planning and management, 53(1): 41-62.
  • Thorsson S, Lindqvist M, Lindqvist S, 2004. Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. International Journal of Biometeorology, 48(3): 149-156.
  • Tian G, Qiao Z, 2014. Assessing the impact of the urbanization process on net primary productivity in China in 1989–2000. Environmental pollution, 184, 320-326.
  • Toy S, Yilmaz S, 2010. Thermal sensation of people performing recreational activities in shadowy environment: a case study from Turkey. Theoredical and Applied Climatology, 101 (3-4): 329-343.
  • Tsoka S, Tsikaloudaki A, Theodosiou T, 2018. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications-a review. Sustainable Cities and Society, 43: 55-76.
  • Wang Y, Akbari H, 2016. The effects of street tree planting on Urban Heat Island mitigation in Montreal. Sustainable Cities and Society, 27, 122-128.
  • Wang Y, Bakker F, De Groot R, Wörtche H, 2014. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Building and environment, 77, 88-100.
  • Yang X, Zhao L, Bruse M, Meng Q, 2013. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Building and Environment, 60, 93-104.
  • Yezioro A, Capeluto I. G, Shaviv E, 2006. Design guidelines for appropriate insolation of urban squares. Renewable energy, 31(7): 1011-1023.
  • Yilmaz S, Mutlu E, Yılmaz H, 2018. Alternative Scenarios for Ecological Urbanizations Using Envi-Met Model. Environmental Science and Pollution Research, 25(26), 26307–26321.
  • Yilmaz S, Yilmaz H, Irmak MA, Kuzulugil AC, Koç A, 2017. Effects of Urban Pinus sylvestris (L.) Plantation Sites on Thermal Comfort. GREEN CITIES 2017 International Symposium on greener cities for more efficient ecosystem services in a climate changing world, Bologna, Italy, 12-15 September 2017.
  • Zittis G, Hadjinicolaou P, Fnais M, Lelieveld J, 2016. Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Regional Environmental Change, 16(7): 1863-1876.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Peyzaj Mimarlığı / Landscape Architecture
Authors

Ayşegül Aksu 0000-0002-6720-0256

Sevgi Yılmaz 0000-0001-7668-5788

Başak Ertem Mutlu This is me 0000-0002-0394-4950

Hasan Yılmaz 0000-0003-3768-4760

Publication Date June 1, 2020
Submission Date October 21, 2019
Acceptance Date February 1, 2020
Published in Issue Year 2020

Cite

APA Aksu, A., Yılmaz, S., Ertem Mutlu, B., Yılmaz, H. (2020). Ağaçların Bina ile Olan Mesafesinin Dış Mekan Termal Konfor Üzerine Etkisi: Erzurum Kenti Örneği. Journal of the Institute of Science and Technology, 10(2), 1298-1307. https://doi.org/10.21597/jist.635503
AMA Aksu A, Yılmaz S, Ertem Mutlu B, Yılmaz H. Ağaçların Bina ile Olan Mesafesinin Dış Mekan Termal Konfor Üzerine Etkisi: Erzurum Kenti Örneği. J. Inst. Sci. and Tech. June 2020;10(2):1298-1307. doi:10.21597/jist.635503
Chicago Aksu, Ayşegül, Sevgi Yılmaz, Başak Ertem Mutlu, and Hasan Yılmaz. “Ağaçların Bina Ile Olan Mesafesinin Dış Mekan Termal Konfor Üzerine Etkisi: Erzurum Kenti Örneği”. Journal of the Institute of Science and Technology 10, no. 2 (June 2020): 1298-1307. https://doi.org/10.21597/jist.635503.
EndNote Aksu A, Yılmaz S, Ertem Mutlu B, Yılmaz H (June 1, 2020) Ağaçların Bina ile Olan Mesafesinin Dış Mekan Termal Konfor Üzerine Etkisi: Erzurum Kenti Örneği. Journal of the Institute of Science and Technology 10 2 1298–1307.
IEEE A. Aksu, S. Yılmaz, B. Ertem Mutlu, and H. Yılmaz, “Ağaçların Bina ile Olan Mesafesinin Dış Mekan Termal Konfor Üzerine Etkisi: Erzurum Kenti Örneği”, J. Inst. Sci. and Tech., vol. 10, no. 2, pp. 1298–1307, 2020, doi: 10.21597/jist.635503.
ISNAD Aksu, Ayşegül et al. “Ağaçların Bina Ile Olan Mesafesinin Dış Mekan Termal Konfor Üzerine Etkisi: Erzurum Kenti Örneği”. Journal of the Institute of Science and Technology 10/2 (June 2020), 1298-1307. https://doi.org/10.21597/jist.635503.
JAMA Aksu A, Yılmaz S, Ertem Mutlu B, Yılmaz H. Ağaçların Bina ile Olan Mesafesinin Dış Mekan Termal Konfor Üzerine Etkisi: Erzurum Kenti Örneği. J. Inst. Sci. and Tech. 2020;10:1298–1307.
MLA Aksu, Ayşegül et al. “Ağaçların Bina Ile Olan Mesafesinin Dış Mekan Termal Konfor Üzerine Etkisi: Erzurum Kenti Örneği”. Journal of the Institute of Science and Technology, vol. 10, no. 2, 2020, pp. 1298-07, doi:10.21597/jist.635503.
Vancouver Aksu A, Yılmaz S, Ertem Mutlu B, Yılmaz H. Ağaçların Bina ile Olan Mesafesinin Dış Mekan Termal Konfor Üzerine Etkisi: Erzurum Kenti Örneği. J. Inst. Sci. and Tech. 2020;10(2):1298-307.