Research Article
BibTex RIS Cite

On Simplicial Leibniz Algebras

Year 2020, , 1224 - 1232, 01.06.2020
https://doi.org/10.21597/jist.657475

Abstract

Aim of this paper is to define simplicial object in category of Leibniz algebras and to show the equivalence between the category of simplicial Leibniz algebras and the category of crossed modules over Leibniz algebras.

References

  • Atik M, Aytekin A, Uslu EÖ, 2017. Representability of actions in the category of (Pre)crossed modules in Leibniz algebras. Communications in Algebra, 45(5): 1825–1841.
  • Aytekin A, Casas JM, Uslu EÖ, 2012. Semi-Complete Crossed Modules of Lie Algebras. Journal of Algebra and Its Applications, 11(5): 1–24.
  • Bloh A, 1965. A generalization of the concept of a Lie algebra. Doklady Akademii Lauk, 165 (3): 471–473.
  • Casas JM, 1999. Crossed extensions of Leibniz algebras. Communations in Mathematics, 27 (12): 6253–6272.
  • Casas JM, Fernandez-Casado R, Garcia-Martinez, X, Khmaladze E, 2018. Actor of a Crossed Module of Leibniz Algebras. Theory and Applications of Categories, 33(2): 23–42.
  • Casas JM, Khmaladze E, Ladra M, 2008. Crossed modules for Leibniz n-algebras. Forum Mathematicum, 20: 841–858.
  • D.M. Kan, 1958. A Combinatorial Definition of Homotopy Groups. Annals of Mathematics, 67(2): 288–312.
  • Ellis GJ, 1993. Homotopical aspects of Lie algebras. Journal of The Australian Mathematical Society, 54(3): 393–419.
  • Emir K, Akay HG, Pullback crossed modules in the category of racks. Hacettepe Journal of Mathematics and Statistics, 48(1): 140–149.
  • Loday JL, 1993. Une version non commutative des algebres de Lie: les algebres de Leibniz. L’Enseignement Mathhematique, 39: 269–293.
  • Loday JL, Pirashvili T, 1993. Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen, 296(1): 139–158.
  • Şahan T, 2019. Further remarks on liftings of crossed modules. Hacettepe Journal of Mathematics and Statistics, 48(3): 743–752.
  • Şahan T, Erciyes A, 2019. Actions of internal groupoids in the category of Leibniz Algebra. Communications Series A1:Mathematics and Statistics, 68(1): 619–632.
  • Whitehead JHC, 1949. Combinatorial Homotopy. Bulletin of the American Mathematical Society, 55: 453–496.

Simplisel Leibniz Cebirler Üzerine

Year 2020, , 1224 - 1232, 01.06.2020
https://doi.org/10.21597/jist.657475

Abstract

Bu makalenin temel amacı, Leibniz cebirler kategorisinde simplisel objeyi tanımlayarak, simplisel Leibniz cebirler kategorisi ile Leibniz cebirler üzerinde çaprazlanmış modüller kategorisinin denkliğini göstermektir.

References

  • Atik M, Aytekin A, Uslu EÖ, 2017. Representability of actions in the category of (Pre)crossed modules in Leibniz algebras. Communications in Algebra, 45(5): 1825–1841.
  • Aytekin A, Casas JM, Uslu EÖ, 2012. Semi-Complete Crossed Modules of Lie Algebras. Journal of Algebra and Its Applications, 11(5): 1–24.
  • Bloh A, 1965. A generalization of the concept of a Lie algebra. Doklady Akademii Lauk, 165 (3): 471–473.
  • Casas JM, 1999. Crossed extensions of Leibniz algebras. Communations in Mathematics, 27 (12): 6253–6272.
  • Casas JM, Fernandez-Casado R, Garcia-Martinez, X, Khmaladze E, 2018. Actor of a Crossed Module of Leibniz Algebras. Theory and Applications of Categories, 33(2): 23–42.
  • Casas JM, Khmaladze E, Ladra M, 2008. Crossed modules for Leibniz n-algebras. Forum Mathematicum, 20: 841–858.
  • D.M. Kan, 1958. A Combinatorial Definition of Homotopy Groups. Annals of Mathematics, 67(2): 288–312.
  • Ellis GJ, 1993. Homotopical aspects of Lie algebras. Journal of The Australian Mathematical Society, 54(3): 393–419.
  • Emir K, Akay HG, Pullback crossed modules in the category of racks. Hacettepe Journal of Mathematics and Statistics, 48(1): 140–149.
  • Loday JL, 1993. Une version non commutative des algebres de Lie: les algebres de Leibniz. L’Enseignement Mathhematique, 39: 269–293.
  • Loday JL, Pirashvili T, 1993. Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen, 296(1): 139–158.
  • Şahan T, 2019. Further remarks on liftings of crossed modules. Hacettepe Journal of Mathematics and Statistics, 48(3): 743–752.
  • Şahan T, Erciyes A, 2019. Actions of internal groupoids in the category of Leibniz Algebra. Communications Series A1:Mathematics and Statistics, 68(1): 619–632.
  • Whitehead JHC, 1949. Combinatorial Homotopy. Bulletin of the American Mathematical Society, 55: 453–496.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Mathematical Sciences
Journal Section Matematik / Mathematics
Authors

Ali Aytekin 0000-0001-7892-6960

Publication Date June 1, 2020
Submission Date December 10, 2019
Acceptance Date February 1, 2020
Published in Issue Year 2020

Cite

APA Aytekin, A. (2020). Simplisel Leibniz Cebirler Üzerine. Journal of the Institute of Science and Technology, 10(2), 1224-1232. https://doi.org/10.21597/jist.657475
AMA Aytekin A. Simplisel Leibniz Cebirler Üzerine. J. Inst. Sci. and Tech. June 2020;10(2):1224-1232. doi:10.21597/jist.657475
Chicago Aytekin, Ali. “Simplisel Leibniz Cebirler Üzerine”. Journal of the Institute of Science and Technology 10, no. 2 (June 2020): 1224-32. https://doi.org/10.21597/jist.657475.
EndNote Aytekin A (June 1, 2020) Simplisel Leibniz Cebirler Üzerine. Journal of the Institute of Science and Technology 10 2 1224–1232.
IEEE A. Aytekin, “Simplisel Leibniz Cebirler Üzerine”, J. Inst. Sci. and Tech., vol. 10, no. 2, pp. 1224–1232, 2020, doi: 10.21597/jist.657475.
ISNAD Aytekin, Ali. “Simplisel Leibniz Cebirler Üzerine”. Journal of the Institute of Science and Technology 10/2 (June 2020), 1224-1232. https://doi.org/10.21597/jist.657475.
JAMA Aytekin A. Simplisel Leibniz Cebirler Üzerine. J. Inst. Sci. and Tech. 2020;10:1224–1232.
MLA Aytekin, Ali. “Simplisel Leibniz Cebirler Üzerine”. Journal of the Institute of Science and Technology, vol. 10, no. 2, 2020, pp. 1224-32, doi:10.21597/jist.657475.
Vancouver Aytekin A. Simplisel Leibniz Cebirler Üzerine. J. Inst. Sci. and Tech. 2020;10(2):1224-32.