Research Article
BibTex RIS Cite

Pseudo-Anosov Örgülerin Topolojik Entropisi ve Çekici Matrisler

Year 2021, , 2278 - 2289, 01.09.2021
https://doi.org/10.21597/jist.760097

Abstract

Bu makalede, sonlu noktası çıkarılmış disk yüzeyinde tanımlı pseudo-Anosov tipinden örgülerin sonsuz bir ailesinin her bir üyesinin topolojik entropisi 𝛑𝟏- train track grafikleri yardımıyla hesaplanmıştır. Kullanılan yöntem Thurston’ın yüzey homeomorfizmaları kuramına dayanmakta ve ilgili pseudo-Anosov örgünün topolojik entropisini veren Dynnikov matrislere alternatif pozitif matrisler sunmaktadır.

Supporting Institution

Dicle Üniversitesi BAP Birimi

Project Number

FEN.17.021

Thanks

Bu çalışma DÜBAP (proje no FEN.17.021) tarafından desteklenmiştir.

References

  • Artin E, 1925 Theorie der Z ̈opfe. Abh. Math. Sem. Univ. Hamburg (4): 47-72.
  • Artin E, 1947 Theory of braids. Ann. of Math. (2), 48:101-126.
  • Bestvina M and Handel M, 1995. Train-tracks for surface homeomorphisms. Topology, 34(1):109-140.
  • Dynnikov I and Wiest B, 2007. On the complexity of braids. J. Eur. Math. Soc. (JEMS), 9(4):801-840.
  • Dynnikov I, 2002. On a Yang-Baxter mapping and the Dehornoy ordering. Us- pekhi Mat. Nauk, 57(3(345)):151-152.
  • Fathi A, Laudenbach F and Poenaru V, 1979. Travaux de Thurston sur les surfaces, volume 66 of Ast ́erisque. Soci ́et ́e Math ́ematique de France, Paris, S ́eminaire Orsay.
  • Hall T and Yurttaş S.Ö, 2009. On the topological entropy of families of braids. Topology Appl., 156(8):1554-1564.
  • Hall T. Software available for download from http://www.maths.liv.ac.uk/~tobyhall/software/.
  • Penner R. C. and Harer J. L, 1992. Combinatorics of train tracks. Annals of Mathematics Studies, volume 125. Princeton University Press, Princeton, NJ.
  • Thurston WP, 1988. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N.S.), 19(2):417-431.
  • Yurttaş SÖ, 2016. Dynnikov and train track transition matrices of pseudo-Anosov braids, Discrete and Continuous Dynamical Systems. Series A, 36(1):109-140.

Topological Entropy of Pseudo-Anosov Braids and Attracting Matrices

Year 2021, , 2278 - 2289, 01.09.2021
https://doi.org/10.21597/jist.760097

Abstract

In this paper, we introduce an alternative method to calculate the topological entropy of each member of an infinite family of pseudo—Anosov braids on the finitely punctured disk making use of 𝛑𝟏- train tracks The method is based on Thurston’s theory of surface homeomorphisms and presents positive matrices alternative to Dynnikov matrices which compute the topological entropy of a given pseudo-Anosov braid.

Project Number

FEN.17.021

References

  • Artin E, 1925 Theorie der Z ̈opfe. Abh. Math. Sem. Univ. Hamburg (4): 47-72.
  • Artin E, 1947 Theory of braids. Ann. of Math. (2), 48:101-126.
  • Bestvina M and Handel M, 1995. Train-tracks for surface homeomorphisms. Topology, 34(1):109-140.
  • Dynnikov I and Wiest B, 2007. On the complexity of braids. J. Eur. Math. Soc. (JEMS), 9(4):801-840.
  • Dynnikov I, 2002. On a Yang-Baxter mapping and the Dehornoy ordering. Us- pekhi Mat. Nauk, 57(3(345)):151-152.
  • Fathi A, Laudenbach F and Poenaru V, 1979. Travaux de Thurston sur les surfaces, volume 66 of Ast ́erisque. Soci ́et ́e Math ́ematique de France, Paris, S ́eminaire Orsay.
  • Hall T and Yurttaş S.Ö, 2009. On the topological entropy of families of braids. Topology Appl., 156(8):1554-1564.
  • Hall T. Software available for download from http://www.maths.liv.ac.uk/~tobyhall/software/.
  • Penner R. C. and Harer J. L, 1992. Combinatorics of train tracks. Annals of Mathematics Studies, volume 125. Princeton University Press, Princeton, NJ.
  • Thurston WP, 1988. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N.S.), 19(2):417-431.
  • Yurttaş SÖ, 2016. Dynnikov and train track transition matrices of pseudo-Anosov braids, Discrete and Continuous Dynamical Systems. Series A, 36(1):109-140.
There are 11 citations in total.

Details

Primary Language Turkish
Subjects Mathematical Sciences
Journal Section Matematik / Mathematics
Authors

Saadet Oyku Yurttas 0000-0002-0262-1914

Arife Atay 0000-0002-3373-8699

Project Number FEN.17.021
Publication Date September 1, 2021
Submission Date June 29, 2020
Acceptance Date March 29, 2021
Published in Issue Year 2021

Cite

APA Yurttas, S. O., & Atay, A. (2021). Pseudo-Anosov Örgülerin Topolojik Entropisi ve Çekici Matrisler. Journal of the Institute of Science and Technology, 11(3), 2278-2289. https://doi.org/10.21597/jist.760097
AMA Yurttas SO, Atay A. Pseudo-Anosov Örgülerin Topolojik Entropisi ve Çekici Matrisler. Iğdır Üniv. Fen Bil Enst. Der. September 2021;11(3):2278-2289. doi:10.21597/jist.760097
Chicago Yurttas, Saadet Oyku, and Arife Atay. “Pseudo-Anosov Örgülerin Topolojik Entropisi Ve Çekici Matrisler”. Journal of the Institute of Science and Technology 11, no. 3 (September 2021): 2278-89. https://doi.org/10.21597/jist.760097.
EndNote Yurttas SO, Atay A (September 1, 2021) Pseudo-Anosov Örgülerin Topolojik Entropisi ve Çekici Matrisler. Journal of the Institute of Science and Technology 11 3 2278–2289.
IEEE S. O. Yurttas and A. Atay, “Pseudo-Anosov Örgülerin Topolojik Entropisi ve Çekici Matrisler”, Iğdır Üniv. Fen Bil Enst. Der., vol. 11, no. 3, pp. 2278–2289, 2021, doi: 10.21597/jist.760097.
ISNAD Yurttas, Saadet Oyku - Atay, Arife. “Pseudo-Anosov Örgülerin Topolojik Entropisi Ve Çekici Matrisler”. Journal of the Institute of Science and Technology 11/3 (September 2021), 2278-2289. https://doi.org/10.21597/jist.760097.
JAMA Yurttas SO, Atay A. Pseudo-Anosov Örgülerin Topolojik Entropisi ve Çekici Matrisler. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:2278–2289.
MLA Yurttas, Saadet Oyku and Arife Atay. “Pseudo-Anosov Örgülerin Topolojik Entropisi Ve Çekici Matrisler”. Journal of the Institute of Science and Technology, vol. 11, no. 3, 2021, pp. 2278-89, doi:10.21597/jist.760097.
Vancouver Yurttas SO, Atay A. Pseudo-Anosov Örgülerin Topolojik Entropisi ve Çekici Matrisler. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(3):2278-89.