Research Article
BibTex RIS Cite

Effect of Hydrostatic Pressure and Dielectric Constant on 2p Excited State Binding Energy and Impurity Self-Polarization in Spherical Quantum Dot

Year 2021, , 212 - 220, 01.03.2021
https://doi.org/10.21597/jist.771793

Abstract

In GaAs / Ga1-xAlxAs spherical quantum dot, the effect of the dielectric constant, which is a function of hydrostatic pressure, on 2p excited state binding energy and impurity self-polarization, was calculated using the variation method as a function of the dot radius and pressure. According to the results obtained, the dielectric constant and hydrostatic pressure have been shown to change the 2p excited state binding energy and impurity self-polarization. The variations of impurity self-polarization and binding energy depending on dot radius, hydrostatic pressure and dielectric constant are shown. It has been observed that impurity self-polarization decreases with increasing spherical dot radius and hydrostatic pressure, and binding energy increases with increasing hydrostatic pressure, which decreases with increasing spherical dot radius. The obtained results are in compatible with the previous studies.

References

  • Aghasyan MM, Kirakosyan AA, 2000. Binding energy of impurity in a size-quantized coated semiconductor wire: role of the dielectric-constant mismatch. Physica E (8): 281.
  • Akankan O, Erdogan I, Akbas H, 2006. Spatial electric field effect on the self-polarization in GaAs/AlAs square quantum-well wires. Physica E, 35 (1): 217-221.
  • Al EB, Kasapoglu E, Sakiroglu S, Sari H, Sökmen I, Duque CA, 2020. Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field. Physica E 119: 114011.
  • Baskoutas S, Terzis AF, 2009. Binding energy of hydrogenic impurity states in an inverse parabolic quantum well under static external fields. The European Physical Journal B, 69: 237-244.
  • Bastard G, 1981. Hydrogenic impurity states in a quantum well: A simple model. Physical Review B, 24(8): 4714-4722.
  • Bella RSD, Navaneethakrishnan K, 2004. Donor binding energies and spin–orbit coupling in a spherical quantum dot. Solid State Communications, 130 (11): 773-776.
  • Brown JW, Spector HN, 1986. Hydrogen impurities in quantum well wires. Journal of Applied Physics, 59 (4): 1179-1186.
  • Bulut P, Erdogan I, Akbas H, 2014. Binding energy of 2p-bound state of a hydrogenic donor impurity in a GaAs/Ga1_xAlxAs spherical quantum dot under hydrostatic pressure. Physica E, 63: 299-303.
  • Chuu DS, Hsiao CM, Mei WN, 1992. Hydrogenic impurity states in quantum dots and quantum wires. Physical Review B, 46 (7): 3898-3905.
  • Csavinszky P, Oyoko H, 1991. Binding energy of on-axis hydrogenic and nonhydrogenic donors in GaAs/Ga1-xAlxAs quantum-well wire of circular cross section. Physical Review B, 43 (11): 9262
  • Erdogan I, Akankan O, Akbas H, 2006. Electric and magnetic field effects on the self-polarization in GaAs/AlAs cylindrical quantum well-wires. Physica E, 33 (1): 83–87.
  • Erdogan I, Akankan O, Akbas H, 2006. Binding energy and self-polarization as function of energy density in GaAs/AlAs quantum well wires. Physica E, 35 (1): 27-32.
  • Erdogan I, Akankan O, Akbas H, 2013. Simultaneous effects of temperature, hydrostatic pressure and electric field on the self-polarization and electric field polarization in a GaAs/Ga0.7Al0.3As spherical quantum dot with a donor impurity. Superlattices and Microstructures, 59: 13-20.
  • Fraizzoli S, Bassani F, Buczko R, 1990. Shallow donor impurities in GaAs-Ga1-x Alx As quantum-well structures: Role of the dielectric-constant mismatch. Physical Review B, 41 (8): 5096-5103.
  • Ghazi HE, Jorio A, Zorkani I, 2013. Impurity binding energy of lowest-excited state in (In,Ga)N–GaN spherical QD under electric field effect. Physica B, 426: 155-157.
  • Greene RL, Bajaj KK, 1985. Binding energy of the 2p0-like level of a hydrogenic donor in GaAs-Ga1-x Alx As quantum-well structures. Physical Review B, 31 (6): 4006-4008.
  • Jahrami ZG, Dezhkam M, 2020. Temperature and hydrostatic pressure effects on the electronic structure, optical properties of spherical segment quantum dot/wetting layer and group velocity of light Laser Physics 30; 055402
  • Jeice AR, Jayam G, Wilson KSJ, 2015. Effect of hydrostatic pressure and polaronic mass of the binding energy in a spherical quantum dot Chinese. Physics B 24(11): 110303.
  • Johnson NF, 1995. Quantum dots: few-body, low-dimensional systems. Journal of Physics: Condensed Matter, 7 (1): 965-989.
  • Mese AI, Okan SE, 2004. Binding energy of relativistic hydrogenic impurities in cylindrical quantum well wires under an applied electric field. Physica Status Solidi B, 241 (15): 3525-3531.
  • Mese AI, Cicek E, Erdogan I, Akankan O, Akbas H, 2017. The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs–Ga1-xAlxAs spherical quantum dot. Indian Journal of Physics, 91(3): 263-268.
  • Mikhail IFI, Ismail IMM, 2010. Hydrogenic impurity in a quantum dot: Comparison between the variational and strong perturbation methods. Superlattices and Microstructures, 48: 388-400
  • Montenegro NP, Merchancano STP, 1992. Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots. Physical Review B, 46(15): 9780-9783.
  • Okan SE, Erdogan I, Akbas H, 2004. Anomalous polarization in an electric field and self-polarization in GaAs/AlAs quantum wells and quantum well wires. Physica E, 21 (1): 91-95.
  • Özmen A, Yakar Y, Çakır B, Atav Ü, 2009. Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot. Optics Communications, 282 (19): 3999-4004.
  • Rezaei G, Mousavi S, Sadeghi E, 2012. External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire. Physica B, 407 (13): 2637-2641.
  • Sivakami A, Gayathri V, 2013. Hydrostatic pressure and temperature dependence of dielectric mismatch effecton the impurity binding energy in a spherical quantum dot. Superlattices and Microstructures, 58: 218-227.
  • Sadeghi E, 2009. Impurity binding energy of excited states in spherical quantum dot. Physica E, 41 (7): 1319-.1322
  • Sadeghi E, Rezaie GH, 2010. Effect of magnetic field on the impurity binding energy of the excited states in spherical quantum dot. Pramana-Journal of Physics, 75: 749-755.
  • Sucu S, Mese AI, Okan SE, 2008. The role of confinement and shape on the binding energy of an electron in a quantum dot. Physica E, 40 (8): 2698-2702.
  • Tangarife E, Duque CA, 2011. Simultaneous effects of hydrostatic pressure and electric field on impurity binding energy and polarizability in coupled InAs/GaAs quantum wires. Physica B, 406 (4): 952-956.
  • Ulas M, Cicek E, Dalgic SS, 2004. Electric field effect on the binding energy of a non‐hydrogenic donor impurity in a cylindrical cross‐sectional quantum well wire. Physica Status Solidi B, 241 (13): 2968-2974.
  • Villamil PV, Montenegro NP, 1999. Excited-States and Infrared Transition Energies of a Donor Impurity in a Disc-Shaped GaAs Quantum Dot under the Action of an Applied Magnetic Field. Journal of Physics: Condensed Matter, 11: 9723-9730.
  • Wang S, Kang Y, LiLi X, 2014. Binding energy of the ground and first fewexcited states of hydrogenic donor impurityin a rectangular GaAs quantum dot in the presence of electric field. Superlattices and Microstructures, 76: 221-233.
  • Zhu JL, Xiong JJ, Gu BL, 1990. Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga1-xAlxAs. Physical Review B, 41 (9): 6001-6007.

Küresel Kuantum Noktasında Hidrostatik Basınç ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi ve Yabancı Atom Self-Polarizasyonuna Etkisi

Year 2021, , 212 - 220, 01.03.2021
https://doi.org/10.21597/jist.771793

Abstract

GaAs/Ga1-xAlxAs küresel kuantum noktasında, hidrostatik basınca bağlı dielektrik sabitinin 2p uyarılmış durum bağlanma enerjisi ve yabancı atom self-polarizasyonuna etkisi nokta yarıçapı ve basıncın fonksiyonu olarak varyasyon yöntemi kullanılarak hesaplanmıştır. Elde edilen sonuçlara göre, dielektrik sabitinin ve hidrostatik basıncın 2p uyarılmış durum bağlanma enerjisini ve yabancı atom self- polarizasyonunu değiştirdiği görülmüştür. Yabancı atom self-polarizasyon ve bağlanma enerjisi nokta yarıçapına, hidrostatik basınca ve dielektrik sabitine bağlı değişimleri gösterilmiştir. Yabancı atom self-polarizasyonun küresel nokta yarıçapı ve hidrostatik basıncın artması ile azaldığı, bağlanma enerjisinin ise küresel nokta yarıçapının artması ile azaldığı hidrostatik basıncın artması ile arttığı görülmüştür. Elde edilen sonuçlar daha önce yapılmış çalışmalar ile uyumludur.

References

  • Aghasyan MM, Kirakosyan AA, 2000. Binding energy of impurity in a size-quantized coated semiconductor wire: role of the dielectric-constant mismatch. Physica E (8): 281.
  • Akankan O, Erdogan I, Akbas H, 2006. Spatial electric field effect on the self-polarization in GaAs/AlAs square quantum-well wires. Physica E, 35 (1): 217-221.
  • Al EB, Kasapoglu E, Sakiroglu S, Sari H, Sökmen I, Duque CA, 2020. Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field. Physica E 119: 114011.
  • Baskoutas S, Terzis AF, 2009. Binding energy of hydrogenic impurity states in an inverse parabolic quantum well under static external fields. The European Physical Journal B, 69: 237-244.
  • Bastard G, 1981. Hydrogenic impurity states in a quantum well: A simple model. Physical Review B, 24(8): 4714-4722.
  • Bella RSD, Navaneethakrishnan K, 2004. Donor binding energies and spin–orbit coupling in a spherical quantum dot. Solid State Communications, 130 (11): 773-776.
  • Brown JW, Spector HN, 1986. Hydrogen impurities in quantum well wires. Journal of Applied Physics, 59 (4): 1179-1186.
  • Bulut P, Erdogan I, Akbas H, 2014. Binding energy of 2p-bound state of a hydrogenic donor impurity in a GaAs/Ga1_xAlxAs spherical quantum dot under hydrostatic pressure. Physica E, 63: 299-303.
  • Chuu DS, Hsiao CM, Mei WN, 1992. Hydrogenic impurity states in quantum dots and quantum wires. Physical Review B, 46 (7): 3898-3905.
  • Csavinszky P, Oyoko H, 1991. Binding energy of on-axis hydrogenic and nonhydrogenic donors in GaAs/Ga1-xAlxAs quantum-well wire of circular cross section. Physical Review B, 43 (11): 9262
  • Erdogan I, Akankan O, Akbas H, 2006. Electric and magnetic field effects on the self-polarization in GaAs/AlAs cylindrical quantum well-wires. Physica E, 33 (1): 83–87.
  • Erdogan I, Akankan O, Akbas H, 2006. Binding energy and self-polarization as function of energy density in GaAs/AlAs quantum well wires. Physica E, 35 (1): 27-32.
  • Erdogan I, Akankan O, Akbas H, 2013. Simultaneous effects of temperature, hydrostatic pressure and electric field on the self-polarization and electric field polarization in a GaAs/Ga0.7Al0.3As spherical quantum dot with a donor impurity. Superlattices and Microstructures, 59: 13-20.
  • Fraizzoli S, Bassani F, Buczko R, 1990. Shallow donor impurities in GaAs-Ga1-x Alx As quantum-well structures: Role of the dielectric-constant mismatch. Physical Review B, 41 (8): 5096-5103.
  • Ghazi HE, Jorio A, Zorkani I, 2013. Impurity binding energy of lowest-excited state in (In,Ga)N–GaN spherical QD under electric field effect. Physica B, 426: 155-157.
  • Greene RL, Bajaj KK, 1985. Binding energy of the 2p0-like level of a hydrogenic donor in GaAs-Ga1-x Alx As quantum-well structures. Physical Review B, 31 (6): 4006-4008.
  • Jahrami ZG, Dezhkam M, 2020. Temperature and hydrostatic pressure effects on the electronic structure, optical properties of spherical segment quantum dot/wetting layer and group velocity of light Laser Physics 30; 055402
  • Jeice AR, Jayam G, Wilson KSJ, 2015. Effect of hydrostatic pressure and polaronic mass of the binding energy in a spherical quantum dot Chinese. Physics B 24(11): 110303.
  • Johnson NF, 1995. Quantum dots: few-body, low-dimensional systems. Journal of Physics: Condensed Matter, 7 (1): 965-989.
  • Mese AI, Okan SE, 2004. Binding energy of relativistic hydrogenic impurities in cylindrical quantum well wires under an applied electric field. Physica Status Solidi B, 241 (15): 3525-3531.
  • Mese AI, Cicek E, Erdogan I, Akankan O, Akbas H, 2017. The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs–Ga1-xAlxAs spherical quantum dot. Indian Journal of Physics, 91(3): 263-268.
  • Mikhail IFI, Ismail IMM, 2010. Hydrogenic impurity in a quantum dot: Comparison between the variational and strong perturbation methods. Superlattices and Microstructures, 48: 388-400
  • Montenegro NP, Merchancano STP, 1992. Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots. Physical Review B, 46(15): 9780-9783.
  • Okan SE, Erdogan I, Akbas H, 2004. Anomalous polarization in an electric field and self-polarization in GaAs/AlAs quantum wells and quantum well wires. Physica E, 21 (1): 91-95.
  • Özmen A, Yakar Y, Çakır B, Atav Ü, 2009. Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot. Optics Communications, 282 (19): 3999-4004.
  • Rezaei G, Mousavi S, Sadeghi E, 2012. External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire. Physica B, 407 (13): 2637-2641.
  • Sivakami A, Gayathri V, 2013. Hydrostatic pressure and temperature dependence of dielectric mismatch effecton the impurity binding energy in a spherical quantum dot. Superlattices and Microstructures, 58: 218-227.
  • Sadeghi E, 2009. Impurity binding energy of excited states in spherical quantum dot. Physica E, 41 (7): 1319-.1322
  • Sadeghi E, Rezaie GH, 2010. Effect of magnetic field on the impurity binding energy of the excited states in spherical quantum dot. Pramana-Journal of Physics, 75: 749-755.
  • Sucu S, Mese AI, Okan SE, 2008. The role of confinement and shape on the binding energy of an electron in a quantum dot. Physica E, 40 (8): 2698-2702.
  • Tangarife E, Duque CA, 2011. Simultaneous effects of hydrostatic pressure and electric field on impurity binding energy and polarizability in coupled InAs/GaAs quantum wires. Physica B, 406 (4): 952-956.
  • Ulas M, Cicek E, Dalgic SS, 2004. Electric field effect on the binding energy of a non‐hydrogenic donor impurity in a cylindrical cross‐sectional quantum well wire. Physica Status Solidi B, 241 (13): 2968-2974.
  • Villamil PV, Montenegro NP, 1999. Excited-States and Infrared Transition Energies of a Donor Impurity in a Disc-Shaped GaAs Quantum Dot under the Action of an Applied Magnetic Field. Journal of Physics: Condensed Matter, 11: 9723-9730.
  • Wang S, Kang Y, LiLi X, 2014. Binding energy of the ground and first fewexcited states of hydrogenic donor impurityin a rectangular GaAs quantum dot in the presence of electric field. Superlattices and Microstructures, 76: 221-233.
  • Zhu JL, Xiong JJ, Gu BL, 1990. Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga1-xAlxAs. Physical Review B, 41 (9): 6001-6007.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Ali İhsan Meşe 0000-0002-3901-590X

Publication Date March 1, 2021
Submission Date July 20, 2020
Acceptance Date August 30, 2020
Published in Issue Year 2021

Cite

APA Meşe, A. İ. (2021). Küresel Kuantum Noktasında Hidrostatik Basınç ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi ve Yabancı Atom Self-Polarizasyonuna Etkisi. Journal of the Institute of Science and Technology, 11(1), 212-220. https://doi.org/10.21597/jist.771793
AMA Meşe Aİ. Küresel Kuantum Noktasında Hidrostatik Basınç ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi ve Yabancı Atom Self-Polarizasyonuna Etkisi. Iğdır Üniv. Fen Bil Enst. Der. March 2021;11(1):212-220. doi:10.21597/jist.771793
Chicago Meşe, Ali İhsan. “Küresel Kuantum Noktasında Hidrostatik Basınç Ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi Ve Yabancı Atom Self-Polarizasyonuna Etkisi”. Journal of the Institute of Science and Technology 11, no. 1 (March 2021): 212-20. https://doi.org/10.21597/jist.771793.
EndNote Meşe Aİ (March 1, 2021) Küresel Kuantum Noktasında Hidrostatik Basınç ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi ve Yabancı Atom Self-Polarizasyonuna Etkisi. Journal of the Institute of Science and Technology 11 1 212–220.
IEEE A. İ. Meşe, “Küresel Kuantum Noktasında Hidrostatik Basınç ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi ve Yabancı Atom Self-Polarizasyonuna Etkisi”, Iğdır Üniv. Fen Bil Enst. Der., vol. 11, no. 1, pp. 212–220, 2021, doi: 10.21597/jist.771793.
ISNAD Meşe, Ali İhsan. “Küresel Kuantum Noktasında Hidrostatik Basınç Ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi Ve Yabancı Atom Self-Polarizasyonuna Etkisi”. Journal of the Institute of Science and Technology 11/1 (March 2021), 212-220. https://doi.org/10.21597/jist.771793.
JAMA Meşe Aİ. Küresel Kuantum Noktasında Hidrostatik Basınç ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi ve Yabancı Atom Self-Polarizasyonuna Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:212–220.
MLA Meşe, Ali İhsan. “Küresel Kuantum Noktasında Hidrostatik Basınç Ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi Ve Yabancı Atom Self-Polarizasyonuna Etkisi”. Journal of the Institute of Science and Technology, vol. 11, no. 1, 2021, pp. 212-20, doi:10.21597/jist.771793.
Vancouver Meşe Aİ. Küresel Kuantum Noktasında Hidrostatik Basınç ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi ve Yabancı Atom Self-Polarizasyonuna Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(1):212-20.