Research Article
BibTex RIS Cite

Analysis of Surface Roughness of Aluminum 5000 Alloys Obtained from Chips After Turning by Taguchi Method

Year 2021, , 464 - 473, 01.03.2021
https://doi.org/10.21597/jist.771868

Abstract

Increasing production demands cause excessive consumption of natural resources. In order to prevent this excessive consumption, the importance of recycling in materials is increasing. In this study, aluminum 5000 alloys whose usage area is increasing day by day have been turned. The chips after turning have been recycled by the casting method. Turning process was also performed in the new product obtained. The surface roughness values that appeared during the first turning and the final turning were examined. The experiments were designed by Taguchi method and again the results were analyzed by Taguchi method. Cutting speed, feed rate and cutting depth were chosen as cutting parameters. Experiments were carried out using the Taguchi L9 experiment setup with three levels of these three parameters. The cast material was harder than nominal material. The lowest surface roughness was found in the 1st experiment for both normal and cast materials. (Cutting speed 200 m/min, feed rate 0.1 mm/rev and cutting depth 0.2 mm). The most effective parameter in turning of both materials was the feed rate.

References

  • Akkus H, 2018. Optimising the effect of cutting parameters on the average surface roughness in a turning process with the Taguchi method. Materiali in Tehnologije, 52(6): 781-785.
  • Akkuş H, 2019. Experimental and Statistical Investigation of Surface Roughness in Turning of AISI 4140 Steel. Sakarya University Journal of Science, 23(5): 775-781.
  • Akkuş H, Yaka H, 2018. Optimization of Turning Process By Using Taguchi Method. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(5): 1444-1448.
  • Baffari D, Reynolds AP, Masnata A, Fratini L, Ingarao G, 2019. Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization. Journal of Manufacturing Processes, 43, 63-69.
  • Erkan Ö, Sur G, Nas E, 2020. Investigation of Surface Morphology of drilled CFRP Plates and Optimization of Cutting Parameters. Surface Review and Letters, 1950209.
  • Jirang CUI., Roven HJ, 2010. Recycling of automotive aluminum. Transactions of Nonferrous Metals Society of China, 20(11): 2057-2063.
  • Kopac J, Bahor M, Soković M, 2002. Optimal machining parameters for achieving the desired surface roughness in fine turning of cold pre-formed steel workpieces. International Journal of Machine Tools and Manufacture, 42, 707-716.
  • Kuntoğlu M, Sağlam H, 2019. Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement, 140, 427-436.
  • Ma B, Li X, Jiang Z, Jiang J, 2019. Recycle more, waste more? When recycling efforts increase resource consumption. Journal of Cleaner Production, 206, 870-877.
  • Özlü B, Akgün M, Demir H, 2019. AA 6061 Alaşımının tornalanmasında kesme parametrelerinin yüzey pürüzlülüğü üzerine etkisinin analizi ve optimizasyonu. Gazi Mühendislik Bilimleri Dergisi, 5(2): 151-158.
  • Palaniappan SP, Muthukumar K, Sabariraj RV, Kumar SD, Sathish T, 2020. CNC turning process parameters optimization on Aluminium 6082 alloy by using Taguchi and ANOVA. Materials Today: Proceedings, 21, 1013-1021.
  • Ravuri M, Reddy YSK, Vardhan DH, 2020. Parametric optimization of face turning parameters for surface roughness on EN 31 material using RSM and Taguchi method. Materials Today: Proceedings.
  • Saraswat N, Yadav A, Kumar A, Srivastava BP, 2014. Optimization of cutting parameters in turning operation of mild steel. International review of applied engineering research, 4(3): 251-256.
  • Soenoko R, Suprapto A, Choiron MA, 2017. Surface roughness and roundness optimization on turning process of aluminium alloy with Taguchi method. Journal of Mechanical Engineering, 14(1): 87-96.
  • Twardowski P, Wiciak-Pikula, M, 2019. Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel. Materials, 12(19): 3091.
  • Yang WP, Tarng YS, 1998. Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of materials processing technology, 84(1-3): 122-129.

Tornalama Sonrası Çıkan Talaşlardan Elde Edilen Alüminyum 5000 Alaşımının Yüzey Pürüzlülüğünün Taguchi Yöntemi ile Analizi

Year 2021, , 464 - 473, 01.03.2021
https://doi.org/10.21597/jist.771868

Abstract

Artan üretim talepleri doğal kaynakların aşırı tüketilmesine neden olmaktadır. Bu aşırı tüketimin önüne geçebilmek için malzemelerde geri dönüşümün önemi artmaktadır. Bu çalışmada, kullanım alanı her geçen gün artan alüminyum 5000 alaşımı tornalanmıştır. Tornalama sonrası çıkan talaşlar döküm yöntemi ile geri dönüştürülmüştür. Elde edilen yeni üründe de tornalama işlemi yapılmıştır. İlk tornalama ve son tornalama işleminde ortaya çıkan yüzey pürüzlülük değerleri incelenmiştir. Deneyler Taguchi yöntemi ile tasarlanmış ve yine sonuçlar da Taguchi yöntemi ile analiz edilmiştir. Kesme parametreleri olarak kesme hızı, ilerleme oranı ve kesme derinliği seçilmiştir. Deneyler bu üç parametrenin üç seviyesi ile Taguchi L9 deney düzeneği kullanılarak yapılmıştır. Döküm malzeme normal malzemeden daha sert çıkmıştır. Hem normal hem de döküm malzemede en düşük yüzey pürüzlülüğü 1. deneyde çıkmıştır. (Kesme hızı 200 m/dk, ilerleme oranı 0.1 mm/dev ve kesme derinliği 0.2 mm). Her iki malzemenin tornalanmasında en etkin parametre ilerleme oranı olmuştur.

References

  • Akkus H, 2018. Optimising the effect of cutting parameters on the average surface roughness in a turning process with the Taguchi method. Materiali in Tehnologije, 52(6): 781-785.
  • Akkuş H, 2019. Experimental and Statistical Investigation of Surface Roughness in Turning of AISI 4140 Steel. Sakarya University Journal of Science, 23(5): 775-781.
  • Akkuş H, Yaka H, 2018. Optimization of Turning Process By Using Taguchi Method. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(5): 1444-1448.
  • Baffari D, Reynolds AP, Masnata A, Fratini L, Ingarao G, 2019. Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization. Journal of Manufacturing Processes, 43, 63-69.
  • Erkan Ö, Sur G, Nas E, 2020. Investigation of Surface Morphology of drilled CFRP Plates and Optimization of Cutting Parameters. Surface Review and Letters, 1950209.
  • Jirang CUI., Roven HJ, 2010. Recycling of automotive aluminum. Transactions of Nonferrous Metals Society of China, 20(11): 2057-2063.
  • Kopac J, Bahor M, Soković M, 2002. Optimal machining parameters for achieving the desired surface roughness in fine turning of cold pre-formed steel workpieces. International Journal of Machine Tools and Manufacture, 42, 707-716.
  • Kuntoğlu M, Sağlam H, 2019. Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement, 140, 427-436.
  • Ma B, Li X, Jiang Z, Jiang J, 2019. Recycle more, waste more? When recycling efforts increase resource consumption. Journal of Cleaner Production, 206, 870-877.
  • Özlü B, Akgün M, Demir H, 2019. AA 6061 Alaşımının tornalanmasında kesme parametrelerinin yüzey pürüzlülüğü üzerine etkisinin analizi ve optimizasyonu. Gazi Mühendislik Bilimleri Dergisi, 5(2): 151-158.
  • Palaniappan SP, Muthukumar K, Sabariraj RV, Kumar SD, Sathish T, 2020. CNC turning process parameters optimization on Aluminium 6082 alloy by using Taguchi and ANOVA. Materials Today: Proceedings, 21, 1013-1021.
  • Ravuri M, Reddy YSK, Vardhan DH, 2020. Parametric optimization of face turning parameters for surface roughness on EN 31 material using RSM and Taguchi method. Materials Today: Proceedings.
  • Saraswat N, Yadav A, Kumar A, Srivastava BP, 2014. Optimization of cutting parameters in turning operation of mild steel. International review of applied engineering research, 4(3): 251-256.
  • Soenoko R, Suprapto A, Choiron MA, 2017. Surface roughness and roundness optimization on turning process of aluminium alloy with Taguchi method. Journal of Mechanical Engineering, 14(1): 87-96.
  • Twardowski P, Wiciak-Pikula, M, 2019. Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel. Materials, 12(19): 3091.
  • Yang WP, Tarng YS, 1998. Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of materials processing technology, 84(1-3): 122-129.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Harun Yaka 0000-0003-4859-9609

Publication Date March 1, 2021
Submission Date July 20, 2020
Acceptance Date October 21, 2020
Published in Issue Year 2021

Cite

APA Yaka, H. (2021). Tornalama Sonrası Çıkan Talaşlardan Elde Edilen Alüminyum 5000 Alaşımının Yüzey Pürüzlülüğünün Taguchi Yöntemi ile Analizi. Journal of the Institute of Science and Technology, 11(1), 464-473. https://doi.org/10.21597/jist.771868
AMA Yaka H. Tornalama Sonrası Çıkan Talaşlardan Elde Edilen Alüminyum 5000 Alaşımının Yüzey Pürüzlülüğünün Taguchi Yöntemi ile Analizi. Iğdır Üniv. Fen Bil Enst. Der. March 2021;11(1):464-473. doi:10.21597/jist.771868
Chicago Yaka, Harun. “Tornalama Sonrası Çıkan Talaşlardan Elde Edilen Alüminyum 5000 Alaşımının Yüzey Pürüzlülüğünün Taguchi Yöntemi Ile Analizi”. Journal of the Institute of Science and Technology 11, no. 1 (March 2021): 464-73. https://doi.org/10.21597/jist.771868.
EndNote Yaka H (March 1, 2021) Tornalama Sonrası Çıkan Talaşlardan Elde Edilen Alüminyum 5000 Alaşımının Yüzey Pürüzlülüğünün Taguchi Yöntemi ile Analizi. Journal of the Institute of Science and Technology 11 1 464–473.
IEEE H. Yaka, “Tornalama Sonrası Çıkan Talaşlardan Elde Edilen Alüminyum 5000 Alaşımının Yüzey Pürüzlülüğünün Taguchi Yöntemi ile Analizi”, Iğdır Üniv. Fen Bil Enst. Der., vol. 11, no. 1, pp. 464–473, 2021, doi: 10.21597/jist.771868.
ISNAD Yaka, Harun. “Tornalama Sonrası Çıkan Talaşlardan Elde Edilen Alüminyum 5000 Alaşımının Yüzey Pürüzlülüğünün Taguchi Yöntemi Ile Analizi”. Journal of the Institute of Science and Technology 11/1 (March 2021), 464-473. https://doi.org/10.21597/jist.771868.
JAMA Yaka H. Tornalama Sonrası Çıkan Talaşlardan Elde Edilen Alüminyum 5000 Alaşımının Yüzey Pürüzlülüğünün Taguchi Yöntemi ile Analizi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:464–473.
MLA Yaka, Harun. “Tornalama Sonrası Çıkan Talaşlardan Elde Edilen Alüminyum 5000 Alaşımının Yüzey Pürüzlülüğünün Taguchi Yöntemi Ile Analizi”. Journal of the Institute of Science and Technology, vol. 11, no. 1, 2021, pp. 464-73, doi:10.21597/jist.771868.
Vancouver Yaka H. Tornalama Sonrası Çıkan Talaşlardan Elde Edilen Alüminyum 5000 Alaşımının Yüzey Pürüzlülüğünün Taguchi Yöntemi ile Analizi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(1):464-73.