Research Article
BibTex RIS Cite

Potansiyel Biyolojik Aktif Bazı Asimetrik Feniletil Üre Türevlerinin Sentezi

Year 2021, , 1374 - 1384, 01.06.2021
https://doi.org/10.21597/jist.826733

Abstract

Bu çalışmada, bir dizi potansiyel biyolojik aktif asimetrik üre türevi sentezlenmiştir. Buna göre (R)-(+)-1-feniletilamin (7) 1,1’-karbonildiimidazol ile su içerisinde reaksiyona sokulmuş ve imidazolid ara ürünleri oluşturulmuştur. Daha sonra üzerine fenetilamin (8a) ve sübstitüe fenetilamin türevleri (8b-e) verildi. Sonuç olarak, potansiyel biyolojik aktif yeni asimetrik üreler (R)-1-fenetil-3- (1-feniletil) üre (9a) ve sübstitüe türevleri (9b-e), % 60 - % 71 arasındaki verimlerle elde edildi.

Thanks

Bu çalışma Erzurum Teknik Üniversitesi Yüksek Teknoloji Araştırma ve Uygulama Merkezi Organik Kimya Araştırma Laboratuvarında Yapılmıştır. Ayrıca NMR spektrumları Atatürk Üniversitesi Fen Fakültesi Kimya Bölümünde alınmıştır. Her iki kurumada teşekkür ederim

References

  • Byrne B, Rotchild R, 1999. 1H NMR studies of drugs with achiral and chiral lanthanide shift reagents: applications to the anticonvulsant pheneturide. Chirality, 11 (7): 529-535.
  • Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM, 2007. Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine, 356 (2): 125–34
  • Hofmann C, Penner U, Dorow R, Pertz HH, Jähnichen S, Horowski R, Latté KP, Palla D, Schurad B, 2006. Lisuride, a dopamine receptor agonist with 5-HT2B receptor antagonist properties: absence of cardiac valvulopathy adverse drug reaction reports supports the concept of a crucial role for 5-HT2B receptor agonism in cardiac valvular fibrosis. Clin Neuropharmacol, 29 (2): 80–6.
  • Llovet JM, Ricci S, Mazzaferro V, et al. 2008. Sorafenib in advanced hepatocellular carcinoma. New England Journal of Medicine, 359 (4): 378–90.
  • Madhava G, Subbaiah KV, Sreenivasulu R, and Naga Raju C, 2012. Synthesis of novel urea and thiourea derivatives of diphenylphosphoramidate and their antimicrobial activity. Der Pharmacia Lettre, 4 (4): 1194-1201.
  • Marona-Lewicka D, Kurrasch-Orbaugh DM, Selken JR, Cumbay MG, Lisnicchia JG, Nichols DE, 2002. Re-evaluation of lisuride pharmacology: 5-hydroxytryptamine1A receptor-mediated behavioral effects overlap its other properties in rats. Psychopharmacology, 164 (1): 93–107.
  • Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M, 2008. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clinical Cancer Research, 14 (17): 5459–65.
  • Njoroge FG, Chen KX, Shih NY, Piwinski JJ, 2008. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infectio. Acc. Chem. Res. 41 (1): 50–9.
  • Özgeriş B, 2020. Synthesis of potentially biologically active novel phenolic derivatives of unsymmetrical ureas from substituted phenethylamines. Monatshefte für Chemie-Chemical Monthly, 151(12): 1851–1857.
  • Özgeri̇ş B, 2020. Sübstitüe Fenetilaminlerin Bazı Simetrik ve Asimetrik Üre Türevlerinin Sentezi. Journal of the Institute of Science and Technology, 10 (3): 1839-1847.
  • Padiya KJ, Gavade S, Kardile B, Tiwari M, Bajare S, Mane M, Gaware V, Varghese S, Harel D, and Kurhade S, 2012. Unprecedented “In Water” Imidazole Carbonylation: Paradigm Shift for Preparation of Urea and Carbamate. Organic Letters, 14 (11): 2814–2817.
  • Pochampally J, Valeru A, Macha R, Kishorekumar A, Tigulla P, Gandu B, Gangagnirao A, 2014. Design, Efficient new synthesis, evaluation of antimicrobial activity and molecular modelling studies of novel aryl substituted urea derivatives. Der Pharma Chemica, 6 (2): 269-282.
  • Zeldin RK, Petruschke RA, 2004. Pharmacological and therapeutic properties of ritonavir-boosted protease inhibitor therapy in HIV-infected patients. Journal of Antimicrobial Chemotherapy, 53 (1): 4–9.

Synthesis of Potentially Biologically Active Some Asymmetric Phenylethyl Urea Derivatives

Year 2021, , 1374 - 1384, 01.06.2021
https://doi.org/10.21597/jist.826733

Abstract

In this study, a number of potentially biologically active asymmetric urea derivatives were synthesized. Accordingly, (R)-(+)-1-phenylethylamine (7) was reacted with 1,1'-carbonyldiimidazole in water and imidazolide intermediates were formed. Then phenethylamine (8a) and substituted phenethylamine derivatives (8b-e) were given. As a result, potentially biologically active novel asymmetric ureas (R)-1-phenethyl-3-(1-phenylethyl) urea (9a) and substituted derivatives (9b-e) were obtained in yields between 60% - 71%.

References

  • Byrne B, Rotchild R, 1999. 1H NMR studies of drugs with achiral and chiral lanthanide shift reagents: applications to the anticonvulsant pheneturide. Chirality, 11 (7): 529-535.
  • Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM, 2007. Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine, 356 (2): 125–34
  • Hofmann C, Penner U, Dorow R, Pertz HH, Jähnichen S, Horowski R, Latté KP, Palla D, Schurad B, 2006. Lisuride, a dopamine receptor agonist with 5-HT2B receptor antagonist properties: absence of cardiac valvulopathy adverse drug reaction reports supports the concept of a crucial role for 5-HT2B receptor agonism in cardiac valvular fibrosis. Clin Neuropharmacol, 29 (2): 80–6.
  • Llovet JM, Ricci S, Mazzaferro V, et al. 2008. Sorafenib in advanced hepatocellular carcinoma. New England Journal of Medicine, 359 (4): 378–90.
  • Madhava G, Subbaiah KV, Sreenivasulu R, and Naga Raju C, 2012. Synthesis of novel urea and thiourea derivatives of diphenylphosphoramidate and their antimicrobial activity. Der Pharmacia Lettre, 4 (4): 1194-1201.
  • Marona-Lewicka D, Kurrasch-Orbaugh DM, Selken JR, Cumbay MG, Lisnicchia JG, Nichols DE, 2002. Re-evaluation of lisuride pharmacology: 5-hydroxytryptamine1A receptor-mediated behavioral effects overlap its other properties in rats. Psychopharmacology, 164 (1): 93–107.
  • Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M, 2008. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clinical Cancer Research, 14 (17): 5459–65.
  • Njoroge FG, Chen KX, Shih NY, Piwinski JJ, 2008. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infectio. Acc. Chem. Res. 41 (1): 50–9.
  • Özgeriş B, 2020. Synthesis of potentially biologically active novel phenolic derivatives of unsymmetrical ureas from substituted phenethylamines. Monatshefte für Chemie-Chemical Monthly, 151(12): 1851–1857.
  • Özgeri̇ş B, 2020. Sübstitüe Fenetilaminlerin Bazı Simetrik ve Asimetrik Üre Türevlerinin Sentezi. Journal of the Institute of Science and Technology, 10 (3): 1839-1847.
  • Padiya KJ, Gavade S, Kardile B, Tiwari M, Bajare S, Mane M, Gaware V, Varghese S, Harel D, and Kurhade S, 2012. Unprecedented “In Water” Imidazole Carbonylation: Paradigm Shift for Preparation of Urea and Carbamate. Organic Letters, 14 (11): 2814–2817.
  • Pochampally J, Valeru A, Macha R, Kishorekumar A, Tigulla P, Gandu B, Gangagnirao A, 2014. Design, Efficient new synthesis, evaluation of antimicrobial activity and molecular modelling studies of novel aryl substituted urea derivatives. Der Pharma Chemica, 6 (2): 269-282.
  • Zeldin RK, Petruschke RA, 2004. Pharmacological and therapeutic properties of ritonavir-boosted protease inhibitor therapy in HIV-infected patients. Journal of Antimicrobial Chemotherapy, 53 (1): 4–9.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Yusuf Akbaba 0000-0002-7770-0473

Publication Date June 1, 2021
Submission Date November 16, 2020
Acceptance Date February 2, 2021
Published in Issue Year 2021

Cite

APA Akbaba, Y. (2021). Potansiyel Biyolojik Aktif Bazı Asimetrik Feniletil Üre Türevlerinin Sentezi. Journal of the Institute of Science and Technology, 11(2), 1374-1384. https://doi.org/10.21597/jist.826733
AMA Akbaba Y. Potansiyel Biyolojik Aktif Bazı Asimetrik Feniletil Üre Türevlerinin Sentezi. Iğdır Üniv. Fen Bil Enst. Der. June 2021;11(2):1374-1384. doi:10.21597/jist.826733
Chicago Akbaba, Yusuf. “Potansiyel Biyolojik Aktif Bazı Asimetrik Feniletil Üre Türevlerinin Sentezi”. Journal of the Institute of Science and Technology 11, no. 2 (June 2021): 1374-84. https://doi.org/10.21597/jist.826733.
EndNote Akbaba Y (June 1, 2021) Potansiyel Biyolojik Aktif Bazı Asimetrik Feniletil Üre Türevlerinin Sentezi. Journal of the Institute of Science and Technology 11 2 1374–1384.
IEEE Y. Akbaba, “Potansiyel Biyolojik Aktif Bazı Asimetrik Feniletil Üre Türevlerinin Sentezi”, Iğdır Üniv. Fen Bil Enst. Der., vol. 11, no. 2, pp. 1374–1384, 2021, doi: 10.21597/jist.826733.
ISNAD Akbaba, Yusuf. “Potansiyel Biyolojik Aktif Bazı Asimetrik Feniletil Üre Türevlerinin Sentezi”. Journal of the Institute of Science and Technology 11/2 (June 2021), 1374-1384. https://doi.org/10.21597/jist.826733.
JAMA Akbaba Y. Potansiyel Biyolojik Aktif Bazı Asimetrik Feniletil Üre Türevlerinin Sentezi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:1374–1384.
MLA Akbaba, Yusuf. “Potansiyel Biyolojik Aktif Bazı Asimetrik Feniletil Üre Türevlerinin Sentezi”. Journal of the Institute of Science and Technology, vol. 11, no. 2, 2021, pp. 1374-8, doi:10.21597/jist.826733.
Vancouver Akbaba Y. Potansiyel Biyolojik Aktif Bazı Asimetrik Feniletil Üre Türevlerinin Sentezi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(2):1374-8.