Research Article
BibTex RIS Cite

Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri

Year 2021, , 1408 - 1419, 01.06.2021
https://doi.org/10.21597/jist.843369

Abstract

Bu makalede, 4-metil-2,3-difenil-2,3-dihidro-1H-pirazol ve 4-(4-metil-5-fenil-2,5-dihidro-1H-pirazol-1-il)benzensulfonamid türevi bileşikler α,β-doymamış aldehit bileşiklerinin fenilhidrazin hidrat veya 4-sülfamoil fenil hidrazin hidrojen klorür ile tepkimelerinden elde edildi. Bu reaksiyonların takibinde bileşiklerin aromatlaştırma tepkimeleri 2,3-dikloro-5,6-disiyano-1,4-benzokinon (DDQ) ile yapıldı. Son olarak bileşik 4-(4-metil-5-(3,4,5-trimetoksifenil)-1H-pirazol-1-il)benzensulfonamidin SO2NH2 grubu Et3N varlığında propiyonik anhidrit ile SO2NHCOEt grubuna dönüştürüldü. Sentezlenen bileşiklerin yapıları 1H-NMR, 13C-NMR ve HRMS analiz yöntemleri ile karakterize edildi.

Thanks

Bu çalışma Atatürk Üniversitesi Fen Fakültesi Kimya Bölümünde gerçekleştirilmiştir. Katkılarından dolayı Kimya bölümüne teşekkürlerimi sunarım.

References

  • Abbate F, Casini A, Owa T, Scozzafava A, Supuran CT, 2004. Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorganic & Medicinal Chemistry Letters, 14 (1): 217-223.
  • Abdel-Aziz HA, El-Zahabi HS, Dawood KM, 2010. Microwave-assisted synthesis and in-vitro anti-tumor activity of 1,3,4-triaryl-5-N-arylpyrazole-carboxamides. European Journal of Medicinal Chemistry, 45 (6): 2427-32.
  • Bayrak C, Senol H, Sıtbası S, Menzek A, Sahin E, 2018. Synthesis and rearrangement reactions of 1,4-dihydrospiro[1,4-methanonaphthalene-9,1′-cyclopropane] derivatives. Tetrahedron, 74(40): 5839-5849.
  • Blobaum AL, Marnett LJ, 2007. Structural and functional basis of cyclooxygenase inhibition. Journal of Medicinal Chemistry, 50 (7): 1425-1441.
  • Brown JR, DuBois RN, 2005. COX-2: A molecular target for colorectal cancer prevention. Journal of Clinical Oncology, 23 (12): 2840-2855.
  • Chen L, Teng W, Geng XL, Zhu YF, Guan YH, Fan X, 2017. Facile synthesis of indene and fluorene derivatives through AlCl3-catalyzed cyclization of in situ formed iminium ions. Applied Organometallic Chemistry, 31 (12): e3863.
  • Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, Dubois RN, 1994. Up-Regulation of Cyclooxygenase-2 Gene-Expression in Human Colorectal Adenomas and Adenocarcinomas. Gastroenterology, 107 (4): 1183-1188.
  • Faidallah HM, Al-Saadi MS, Rostom SAF, Fahmy HTY, 2007. Synthesis of some sulfonamides, disubstituted sulfonylureas or thioureas and some structurally related variants. A class of promising antitumor agents. Medicinal Chemistry Research, 16 (6): 300-318.
  • Gao M, Wang M, Miller KD, Hutchins GD, Zheng QH, 2009. Synthesis of carbon-11 labeled celecoxib derivatives as new candidate PET radioligands for imaging of inflammation. Appl Radiat Isot, 67 (11): 2019-24.
  • Gogoi P, Gogoi SR, Devi N, Barman P, 2014. Aluminium Chloride–Catalyzed Synthesis of 4-Benzyl Cinnolines from Aryl Hydrazones. Synthetic Communications, 44 (8): 1142-1148.
  • Hamberg M, Samuelss B, 1973. Detection and Isolation of an Endoperoxide Intermediate in Prostaglandin Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 70 (3): 899-903.
  • Husain SS, Szabo IL, Tarnawski AS, 2002. NSAID inhibition of GI cancer growth: Clinical implications and molecular mechanisms of action. American Journal of Gastroenterology, 97 (3): 542-553.
  • Jagerovic N, Cano C, Elguero J, Goya P, Callado LF, Meana JJ, Giron R, Abalo R, Ruiz D, Goicoechea C, Martin MI, 2002. Long-acting fentanyl analogues: Synthesis and pharmacology of N-(1-phenylpyrazolyl)-N-(1-phenylalkyl-4-piperidyl)propanamides. Bioorganic & Medicinal Chemistry, 10 (3): 817-827.
  • Kamal A, Reddy VS, Shaik AB, Kumar GB, Vishnuvardhan MVPS, Polepalli S, Jain N, 2015. Synthesis of (Z)-(arylamino)-pyrazolyl/isoxazolyl-2-propenones as tubulin targeting anticancer agents and apoptotic inducers. Organic & Biomolecular Chemistry, 13 (11): 3416-3431.
  • Kashiwa M, Kuwata Y, Sonoda M, Tanimori S, 2016. Oxone-mediated facile access to substituted pyrazoles. Tetrahedron, 72 (2): 304-311.
  • Ma Y, Liang S, Zhang Y, Yang D, Wang, R, 2018. Development of anti-fungal pesticides from protein kinase inhibitor-based anticancer agents. European Journal of Medicinal Chemistry, 148, 349-358.
  • Nagarapu L, Mateti J, Gaikwad HK, Bantu R, Sheeba Rani M, Prameela Subhashini NJ, 2011. Synthesis and anti-inflammatory activity of some novel 3-phenyl-N-[3-(4-phenylpiperazin-1yl)propyl]-1H-pyrazole-5-carboxamide derivatives. Bioorganic & Medicinal Chemistry Letters, 21 (14): 4138-40.
  • Ning XL, Guo Y, Ma XY, Zhu RZ, Tian C, Wang XW, Ma ZZ, Zhang ZL, Liu JY, 2013. Synthesis and neuroprotective effect of E-3,4-dihydroxy styryl aralkyl ketones derivatives against oxidative stress and inflammation. Bioorganic & Medicinal Chemistry Letters, 23 (13): 3700-3703.
  • Nugteren DH, Hazelhof E, 1973. Isolation and Properties of Intermediates in Prostaglandin Biosynthesis. Biochimica Et Biophysica Acta, 326 (3): 448-461.
  • Pal M, Madan M, Padakanti S, Pattabiraman VR, Kalleda S, Vanguri A, Mullangi R, Mamidi NVSR, Casturi SR, Malde A, Gopalakrishnan B, Yeleswarapu KR, 2003. Synthesis and cyclooxygenase-2 inhibiting property of 1,5-diarylpyrazoles with substituted benzenesulfonamide moiety as pharmacophore: Preparation of sodium salt for injectable formulation. Journal of Medicinal Chemistry, 46 (19): 3975-3984.
  • Pal P, Jana N, Nanda S, 2014. Asymmetric total synthesis of paecilomycin E, 10'-epi-paecilomycin E and 6'-epi-cochliomycin C. Organic & Biomolecular Chemistry, 12 (41): 8257-74.
  • Senol H, Bayrak C, Menzek A, Sahin E, Karakus M, 2016. Cycloaddition reaction of spiro[2.4]hepta-4,6-dien-1-ylmethanol and PTAD: a new rearrangement. Tetrahedron, 72(20): 2587-2592.
  • Sharshira EM, Hamada NM, 2012. Synthesis and antimicrobial evaluation of some pyrazole derivatives. Molecules, 17 (5): 4962-71.
  • Shaw AY, Liau HH, Lu PJ, Yang CN, Lee CH, Chen JY, Xu Z, Flynn G, 2010. 3,5-Diaryl-1H-pyrazole as a molecular scaffold for the synthesis of apoptosis-inducing agents. Bioorg Med Chem, 18 (9): 3270-8.
  • Shingare RM, Patil YS, Sangshetti JN, Patil RB, Rajani DP, Rajani SD, Madje BR, 2018. Benzene sulfonamide pyrazole thio-oxadiazole hybrid as potential antimicrobial and antitubercular agents. Research on Chemical Intermediates, 44 (7): 4437-4453.
  • Wang ZL, Li HL, Ge LS, An XL, Zhang ZG, Luo X, Fossey JS, Deng WP, 2014. DDQ-mediated oxidative coupling: an approach to 2,3-dicyanofuran (thiophene). J Org Chem, 79 (3): 1156-65.
  • Wijtmans M, Maussang D, Sirci F, Scholten DJ, Canals M, Mujic-Delic A, Chong M, Chatalic KL, Custers H, Janssen E, de Graaf C, Smit MJ, de Esch IJ, Leurs R, 2012. Synthesis, modeling and functional activity of substituted styrene-amides as small-molecule CXCR7 agonists. European Journal of Medicinal Chemistry, 51, 184-92.
  • Xie WL, Chipman JG, Robertson DL, Erikson RL, Simmons DL, 1991. Expression of a Mitogen-Responsive Gene Encoding Prostaglandin Synthase Is Regulated by Messenger-Rna Splicing. Proceedings of the National Academy of Sciences of the United States of America, 88 (7): 2692-2696.
  • Zhang J, Shen B, Lin A, 2007. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol Sci, 28 (6): 286-95.
  • Zhang X, Kang J, Niu P, Wu J, Yu W, Chang J, 2014. I2-mediated oxidative C-N bond formation for metal-free one-pot synthesis of di-, tri-, and tetrasubstituted pyrazoles from alpha,beta-unsaturated aldehydes/ketones and hydrazines. J Org Chem, 79 (21): 10170-8.
  • Zhou HB, Carlson KE, Stossi F, Katzenellenbogen BS, Katzenellenbogen JA, 2009. Analogs of methyl-piperidinopyrazole (MPP): antiestrogens with estrogen receptor alpha selective activity. Bioorganic & Medicinal Chemistry Letters, 19 (1): 108-10.

Syntheses of Potential Bioactive Some New Pyrazole Derivatives Having Benzenesulfonamide Moiety

Year 2021, , 1408 - 1419, 01.06.2021
https://doi.org/10.21597/jist.843369

Abstract

In this article, 4-methyl-2,3-diphenyl-2,3-dihydro-1H-pyrazole and 4-(4-methyl-5-phenyl-2,5-dihydro-1H-pyrazole-1-yl) benzenesulfonamide derivatives were synthesized from the reactions of α, β-unsaturated aldehydes with phenylhydrazine hydrate and 4-sulfamoylphenylhydrazine hydrogen chloride, respectively. Following these reactions, aromatization of the compounds were achieved with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Finally, SO2NH2 group of compound 4-(4-methyl-5-(3,4,5-trimethoxyphenyl) -1H-pyrazol-1-yl) benzenesulfonamidine was converted to the SO2NHCOEt group with propionic anhydride in the presence of Et3N. The structures of the synthesized compounds were characterized by 1H-NMR, 13C-NMR, and HRMS analysis.

References

  • Abbate F, Casini A, Owa T, Scozzafava A, Supuran CT, 2004. Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorganic & Medicinal Chemistry Letters, 14 (1): 217-223.
  • Abdel-Aziz HA, El-Zahabi HS, Dawood KM, 2010. Microwave-assisted synthesis and in-vitro anti-tumor activity of 1,3,4-triaryl-5-N-arylpyrazole-carboxamides. European Journal of Medicinal Chemistry, 45 (6): 2427-32.
  • Bayrak C, Senol H, Sıtbası S, Menzek A, Sahin E, 2018. Synthesis and rearrangement reactions of 1,4-dihydrospiro[1,4-methanonaphthalene-9,1′-cyclopropane] derivatives. Tetrahedron, 74(40): 5839-5849.
  • Blobaum AL, Marnett LJ, 2007. Structural and functional basis of cyclooxygenase inhibition. Journal of Medicinal Chemistry, 50 (7): 1425-1441.
  • Brown JR, DuBois RN, 2005. COX-2: A molecular target for colorectal cancer prevention. Journal of Clinical Oncology, 23 (12): 2840-2855.
  • Chen L, Teng W, Geng XL, Zhu YF, Guan YH, Fan X, 2017. Facile synthesis of indene and fluorene derivatives through AlCl3-catalyzed cyclization of in situ formed iminium ions. Applied Organometallic Chemistry, 31 (12): e3863.
  • Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, Dubois RN, 1994. Up-Regulation of Cyclooxygenase-2 Gene-Expression in Human Colorectal Adenomas and Adenocarcinomas. Gastroenterology, 107 (4): 1183-1188.
  • Faidallah HM, Al-Saadi MS, Rostom SAF, Fahmy HTY, 2007. Synthesis of some sulfonamides, disubstituted sulfonylureas or thioureas and some structurally related variants. A class of promising antitumor agents. Medicinal Chemistry Research, 16 (6): 300-318.
  • Gao M, Wang M, Miller KD, Hutchins GD, Zheng QH, 2009. Synthesis of carbon-11 labeled celecoxib derivatives as new candidate PET radioligands for imaging of inflammation. Appl Radiat Isot, 67 (11): 2019-24.
  • Gogoi P, Gogoi SR, Devi N, Barman P, 2014. Aluminium Chloride–Catalyzed Synthesis of 4-Benzyl Cinnolines from Aryl Hydrazones. Synthetic Communications, 44 (8): 1142-1148.
  • Hamberg M, Samuelss B, 1973. Detection and Isolation of an Endoperoxide Intermediate in Prostaglandin Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 70 (3): 899-903.
  • Husain SS, Szabo IL, Tarnawski AS, 2002. NSAID inhibition of GI cancer growth: Clinical implications and molecular mechanisms of action. American Journal of Gastroenterology, 97 (3): 542-553.
  • Jagerovic N, Cano C, Elguero J, Goya P, Callado LF, Meana JJ, Giron R, Abalo R, Ruiz D, Goicoechea C, Martin MI, 2002. Long-acting fentanyl analogues: Synthesis and pharmacology of N-(1-phenylpyrazolyl)-N-(1-phenylalkyl-4-piperidyl)propanamides. Bioorganic & Medicinal Chemistry, 10 (3): 817-827.
  • Kamal A, Reddy VS, Shaik AB, Kumar GB, Vishnuvardhan MVPS, Polepalli S, Jain N, 2015. Synthesis of (Z)-(arylamino)-pyrazolyl/isoxazolyl-2-propenones as tubulin targeting anticancer agents and apoptotic inducers. Organic & Biomolecular Chemistry, 13 (11): 3416-3431.
  • Kashiwa M, Kuwata Y, Sonoda M, Tanimori S, 2016. Oxone-mediated facile access to substituted pyrazoles. Tetrahedron, 72 (2): 304-311.
  • Ma Y, Liang S, Zhang Y, Yang D, Wang, R, 2018. Development of anti-fungal pesticides from protein kinase inhibitor-based anticancer agents. European Journal of Medicinal Chemistry, 148, 349-358.
  • Nagarapu L, Mateti J, Gaikwad HK, Bantu R, Sheeba Rani M, Prameela Subhashini NJ, 2011. Synthesis and anti-inflammatory activity of some novel 3-phenyl-N-[3-(4-phenylpiperazin-1yl)propyl]-1H-pyrazole-5-carboxamide derivatives. Bioorganic & Medicinal Chemistry Letters, 21 (14): 4138-40.
  • Ning XL, Guo Y, Ma XY, Zhu RZ, Tian C, Wang XW, Ma ZZ, Zhang ZL, Liu JY, 2013. Synthesis and neuroprotective effect of E-3,4-dihydroxy styryl aralkyl ketones derivatives against oxidative stress and inflammation. Bioorganic & Medicinal Chemistry Letters, 23 (13): 3700-3703.
  • Nugteren DH, Hazelhof E, 1973. Isolation and Properties of Intermediates in Prostaglandin Biosynthesis. Biochimica Et Biophysica Acta, 326 (3): 448-461.
  • Pal M, Madan M, Padakanti S, Pattabiraman VR, Kalleda S, Vanguri A, Mullangi R, Mamidi NVSR, Casturi SR, Malde A, Gopalakrishnan B, Yeleswarapu KR, 2003. Synthesis and cyclooxygenase-2 inhibiting property of 1,5-diarylpyrazoles with substituted benzenesulfonamide moiety as pharmacophore: Preparation of sodium salt for injectable formulation. Journal of Medicinal Chemistry, 46 (19): 3975-3984.
  • Pal P, Jana N, Nanda S, 2014. Asymmetric total synthesis of paecilomycin E, 10'-epi-paecilomycin E and 6'-epi-cochliomycin C. Organic & Biomolecular Chemistry, 12 (41): 8257-74.
  • Senol H, Bayrak C, Menzek A, Sahin E, Karakus M, 2016. Cycloaddition reaction of spiro[2.4]hepta-4,6-dien-1-ylmethanol and PTAD: a new rearrangement. Tetrahedron, 72(20): 2587-2592.
  • Sharshira EM, Hamada NM, 2012. Synthesis and antimicrobial evaluation of some pyrazole derivatives. Molecules, 17 (5): 4962-71.
  • Shaw AY, Liau HH, Lu PJ, Yang CN, Lee CH, Chen JY, Xu Z, Flynn G, 2010. 3,5-Diaryl-1H-pyrazole as a molecular scaffold for the synthesis of apoptosis-inducing agents. Bioorg Med Chem, 18 (9): 3270-8.
  • Shingare RM, Patil YS, Sangshetti JN, Patil RB, Rajani DP, Rajani SD, Madje BR, 2018. Benzene sulfonamide pyrazole thio-oxadiazole hybrid as potential antimicrobial and antitubercular agents. Research on Chemical Intermediates, 44 (7): 4437-4453.
  • Wang ZL, Li HL, Ge LS, An XL, Zhang ZG, Luo X, Fossey JS, Deng WP, 2014. DDQ-mediated oxidative coupling: an approach to 2,3-dicyanofuran (thiophene). J Org Chem, 79 (3): 1156-65.
  • Wijtmans M, Maussang D, Sirci F, Scholten DJ, Canals M, Mujic-Delic A, Chong M, Chatalic KL, Custers H, Janssen E, de Graaf C, Smit MJ, de Esch IJ, Leurs R, 2012. Synthesis, modeling and functional activity of substituted styrene-amides as small-molecule CXCR7 agonists. European Journal of Medicinal Chemistry, 51, 184-92.
  • Xie WL, Chipman JG, Robertson DL, Erikson RL, Simmons DL, 1991. Expression of a Mitogen-Responsive Gene Encoding Prostaglandin Synthase Is Regulated by Messenger-Rna Splicing. Proceedings of the National Academy of Sciences of the United States of America, 88 (7): 2692-2696.
  • Zhang J, Shen B, Lin A, 2007. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol Sci, 28 (6): 286-95.
  • Zhang X, Kang J, Niu P, Wu J, Yu W, Chang J, 2014. I2-mediated oxidative C-N bond formation for metal-free one-pot synthesis of di-, tri-, and tetrasubstituted pyrazoles from alpha,beta-unsaturated aldehydes/ketones and hydrazines. J Org Chem, 79 (21): 10170-8.
  • Zhou HB, Carlson KE, Stossi F, Katzenellenbogen BS, Katzenellenbogen JA, 2009. Analogs of methyl-piperidinopyrazole (MPP): antiestrogens with estrogen receptor alpha selective activity. Bioorganic & Medicinal Chemistry Letters, 19 (1): 108-10.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Çetin Bayrak 0000-0001-5169-7352

Publication Date June 1, 2021
Submission Date December 19, 2020
Acceptance Date February 4, 2021
Published in Issue Year 2021

Cite

APA Bayrak, Ç. (2021). Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri. Journal of the Institute of Science and Technology, 11(2), 1408-1419. https://doi.org/10.21597/jist.843369
AMA Bayrak Ç. Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri. Iğdır Üniv. Fen Bil Enst. Der. June 2021;11(2):1408-1419. doi:10.21597/jist.843369
Chicago Bayrak, Çetin. “Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri”. Journal of the Institute of Science and Technology 11, no. 2 (June 2021): 1408-19. https://doi.org/10.21597/jist.843369.
EndNote Bayrak Ç (June 1, 2021) Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri. Journal of the Institute of Science and Technology 11 2 1408–1419.
IEEE Ç. Bayrak, “Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri”, Iğdır Üniv. Fen Bil Enst. Der., vol. 11, no. 2, pp. 1408–1419, 2021, doi: 10.21597/jist.843369.
ISNAD Bayrak, Çetin. “Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri”. Journal of the Institute of Science and Technology 11/2 (June 2021), 1408-1419. https://doi.org/10.21597/jist.843369.
JAMA Bayrak Ç. Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:1408–1419.
MLA Bayrak, Çetin. “Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri”. Journal of the Institute of Science and Technology, vol. 11, no. 2, 2021, pp. 1408-19, doi:10.21597/jist.843369.
Vancouver Bayrak Ç. Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(2):1408-19.