Research Article
BibTex RIS Cite

Synthesis and Crystal Structure of New [HNC5H4B(OH)2–3]2[Pt(CN)4] Compound of Containing Pyridine-3-Boronic Acid and PtCN4

Year 2021, , 2803 - 2809, 15.12.2021
https://doi.org/10.21597/jist.936125

Abstract

In this work, the new compound [HNC5H4B(OH)2–3]2[Pt(CN)4] was synthesized and its crystal structure was characterized by the single crystal X-ray diffraction method. Crystal structure analysis showed in the orthorhombic crystal system of the compound, in the Cmca space group and a= 6.4372(13) Å, b = 14.769(3) Å, c = 19.045(4) Å, 𝛼 = β = γ = 90°, V = 1810.6(6) Å3, Z = 4 crystallization. In the crystalline structure of the compound, [Pt(CN)4]2– anion and [HNC5H4B(OH)2–3]22+ cation interact with N–H⋯NCPt– and strong B(OH)⋯NCPt– hydrogen bonds. Thus, the structure grows in a one-dimension chain structure. A two-dimensional network is formed in the bc plane with the cation molecules directed alternately above and below the glide plane. In addition, hydrogen bond interactions O–H⋯N, C–H⋯O, C–H⋯N and N–H⋯N also hold molecules together. Thus, a three-dimensional packed structure is formed. These hydrogen bond interactions provide the formation of a threedimensional crystal structure and the stability of the lattice structure.

References

  • Becke AD, 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38:3098–3100.
  • Becke AD, 1993. Density‐functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98:5648–5652.
  • Bondi A, 1964. Van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68:441–451.
  • Carvajal N, Uribe E, Sepu´lveda M, Mendoza C, Fuentealba B and Salas M, 1996. Chemical modification of Semele solida arginase by diethyl pyrocarbonate: Evidence for a critical histidine residue. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology, 114:367–370.
  • Coban MB, Kocak C, Kara H, Aygun M and Amjad A, 2017. Magnetic properties and sensitized visible and NIR luminescence of DyIII and EuIII coordination polymers by energy transfer antenna ligands. Molecular Crystals and Liquid Crystals, 648:202–215.
  • Coban MB, 2018. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear GdIII coordination complex. Journal of Molecular Structure, 1162:109–116.
  • Deagostino A, Protti N, Alberti D, Boggio P, Bortolussi S, Altieri S and Crich SG, 2016. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Medicinal Chemistry, 8:899–917.
  • Deng Q, Zheng Q, Zuo B and Tu T, 2020. Robust NHC-palladacycles-catalyzed Suzuki−Miyaura cross-coupling of amides via C-N activation. Green Synthesis and Catalysis, 1:75–78. Diccianni JB and Diao T, 2019. Mechanisms of Nickel-Catalyzed Cross-Coupling Reactions. Trends in Chemistry, 1:830–844.
  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, 2009. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. Journal of Applied Crystallography, 42:339–341.
  • Ejsmont K, Zaleski J, Sporzyński A and Lewandowski M, 2003. 5-Formyl-2-furanboronic acid at 100 K. Acta Crystallographica Section E: Structure Reports Online, 59:o1324–o1326.
  • Gray AP, Platz RD, Henderson TR, Timothy CP, Takahashi K and Dretchen KL, 1988. Approaches to protection against nerve agent poisoning. (Naphthylvinyl)pyridine derivatives as potential antidotes. Journal of Medical Chemistry, 31:807–814.
  • Hall DG, 2011. In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials Second Edition, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany.
  • Kara H, Adams CJ, Orpen, AG, Podesta TJ, 2006. Pyridinium Boronic Acid Salts in Crystal Synthesis. New Journal of Chemisty, 30:1461–1469.
  • Khangulov SV, Pessiki PJ, Barynin VV, Ash DE and Dismukes GC, 1995. Determination of the Metal Ion Separation and Energies of the Three Lowest Electronic States of Dimanganese(II,II) Complexes and Enzymes: Catalase and Liver Arginase. Biochemistry, 34:2015–2025.
  • Li B, Li T, Aliyu MA, Li ZH and Tang W, 2019. Enantioselective Palladium‐Catalyzed Cross‐Coupling of α‐Bromo Carboxamides and Aryl Boronic Acids. Angewandte Chemie, ange.201905174.
  • Becke AD, 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38:3098–3100.
  • Becke AD, 1993. Density‐functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98:5648–5652.
  • Bondi A, 1964. Van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68:441–451.
  • Carvajal N, Uribe E, Sepu´lveda M, Mendoza C, Fuentealba B and Salas M, 1996. Chemical modification of Semele solida arginase by diethyl pyrocarbonate: Evidence for a critical histidine residue. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology, 114:367–370.
  • Coban MB, Kocak C, Kara H, Aygun M and Amjad A, 2017. Magnetic properties and sensitized visible and NIR luminescence of DyIII and EuIII coordination polymers by energy transfer antenna ligands. Molecular Crystals and Liquid Crystals, 648:202–215.
  • Coban MB, 2018. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear GdIII coordination complex. Journal of Molecular Structure, 1162:109–116.
  • Deagostino A, Protti N, Alberti D, Boggio P, Bortolussi S, Altieri S and Crich SG, 2016. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Medicinal Chemistry, 8:899–917.
  • Deng Q, Zheng Q, Zuo B and Tu T, 2020. Robust NHC-palladacycles-catalyzed Suzuki−Miyaura cross-coupling of amides via C-N activation. Green Synthesis and Catalysis, 1:75–78.
  • Diccianni JB and Diao T, 2019. Mechanisms of Nickel-Catalyzed Cross-Coupling Reactions. Trends in Chemistry, 1:830–844.
  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, 2009. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. Journal of Applied Crystallography, 42:339–341.
  • Ejsmont K, Zaleski J, Sporzyński A and Lewandowski M, 2003. 5-Formyl-2-furanboronic acid at 100 K. Acta Crystallographica Section E: Structure Reports Online, 59:o1324–o1326.
  • Gray AP, Platz RD, Henderson TR, Timothy CP, Takahashi K and Dretchen KL, 1988. Approaches to protection against nerve agent poisoning. (Naphthylvinyl)pyridine derivatives as potential antidotes. Journal of Medical Chemistry, 31:807–814.
  • Hall DG, 2011. In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials Second Edition, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany.
  • Kara H, Adams CJ, Orpen, AG, Podesta TJ, 2006. Pyridinium Boronic Acid Salts in Crystal Synthesis. New Journal of Chemisty, 30:1461–1469.
  • Khangulov SV, Pessiki PJ, Barynin VV, Ash DE and Dismukes GC, 1995. Determination of the Metal Ion Separation and Energies of the Three Lowest Electronic States of Dimanganese(II,II) Complexes and Enzymes: Catalase and Liver Arginase. Biochemistry, 34:2015–2025.
  • Li B, Li T, Aliyu MA, Li ZH and Tang W, 2019. Enantioselective Palladium‐Catalyzed Cross‐Coupling of α‐Bromo Carboxamides and Aryl Boronic Acids. Angewandte Chemie, ange.201905174.
  • Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M and van de Streek J, 2006. Mercury : visualization and analysis of crystal structures. Journal Applied Crystallography, 39:453–457.
  • Mohammadi M and Ghorbani-Choghamarani A, 2020. l -Methionine–Pd complex supported on hercynite as a highly efficient and reusable nanocatalyst for C–C cross-coupling reactions. New Journal of Chemistry, 44:2919–2929.
  • Oylumluoglu G, Coban MB, Kocak C, Aygun M and Kara H, 2017. 2-and 1-D coordination polymers of Dy (III) and Ho (III) with near infrared and visible luminescence by efficient charge-transfer antenna ligand. Journal of Molecular Structure, 1146:356–364.
  • Parry PR, Wang C, Batsanov AS, Bryce MR and Tarbit B, 2002. Functionalized Pyridylboronic Acids and Their Suzuki Cross-Coupling Reactions To Yield Novel Heteroarylpyridines. Journal of Organic Chemistry, 67:7541–7543.
  • Roughley SD and Jordan AM, 2011. The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. Journal of Medicinal Chemistry, 54:3451–3479.
  • SAINT V7.60A, Bruker-AXS 2008. Inc. Madison, Wisconsin, USA.
  • Sheldrick GM, 2008. A Short History of SHELX. Acta Crystallographica, A64:112–122.
  • Suzuki A, Diederich F, Stang PJ, 1998. Metal-catalyzed Cross-coupling Reactions Wiley-VCH, Weinheim, Germany, Chapter 2.
  • Torborg C and Beller M, 2009. Recent Applications of Palladium‐Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Advanced Synthesis and Catalysis, 351:3027–3043.
  • Yahsi Y, Gungor E, Kara H, 2015. Chlorometallate-Pyridinium Boronic Acid Salts for Crystal Engineering: Synthesis of One-, Two- and Three-Dimensional Hydrogen Bond Networks. Crystal Growth and Design, 15:2652–2660.
  • Yang W, Gao X and Wang B, 2003. Boronic acid compounds as potential pharmaceutical agents. Medicinal Research Reviews, 23:346–368.
  • Zhu Q, Saeed M, Song R, Sun T, Jiang C and Yu H, 2020. Dynamic covalent chemistry-regulated stimuli-activatable drug delivery systems for improved cancer therapy. Chinese Chemical Letters, 31:1051–1059.

3-Piridin Boronik Asit ve PtCN4 İçeren Yeni [HNC5H4B(OH)2–3]2[Pt(CN)4] Bileşiğin Sentezi ve Kristal Yapısı

Year 2021, , 2803 - 2809, 15.12.2021
https://doi.org/10.21597/jist.936125

Abstract

Bu çalışmada, yeni bileşik [HNC5H4B(OH)2–3]2[Pt(CN)4] sentezlendi ve tek kristal X-ışını kırınımı metodu ile kristal yapısı karakterize edildi. Kristal yapı analizi bileşiğin ortorombik kristal sisteminde, Cmca uzay grubunda ve a=6.4372(13) Å, b=14.769(3) Å, c=19.045(4) Å, 𝛼 = β = γ = 90°, V=1810.6(6) Å3, Z=4 kristalleştiğini gösterdi. Bileşiğin kristal yapısında [Pt(CN)4]2– anyonu ve [HNC5H4B(OH)2–3]22+ katyonu N–H⋯NCPt– vegüçlü B(OH)⋯NCPt– hidrojen bağıile etkileşmektedir. Böylece, yapı bir boyutlu zincir bir yapıda büyümektedir. Kayma düzleminin üzerine ve altına dönüşümlü olarak yönlenen katyon molekülleri bc düzleminde iki boyutlu bir ağ oluşturmaktadır. Ayrıca, O–H⋯N, C–H⋯O, C–H⋯N ve N–H⋯N hidrojen bağ etkileşimleri de molekülleri bir arada tutmaktadır. Böylece üç boyutlu paketlenmiş bir yapı oluşmaktadır. Bu hidrojen bağ etkileşimleri üç boyutlu kristal yapının oluşmasını ve kafes yapının kararlılığını sağlamaktadır.

References

  • Becke AD, 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38:3098–3100.
  • Becke AD, 1993. Density‐functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98:5648–5652.
  • Bondi A, 1964. Van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68:441–451.
  • Carvajal N, Uribe E, Sepu´lveda M, Mendoza C, Fuentealba B and Salas M, 1996. Chemical modification of Semele solida arginase by diethyl pyrocarbonate: Evidence for a critical histidine residue. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology, 114:367–370.
  • Coban MB, Kocak C, Kara H, Aygun M and Amjad A, 2017. Magnetic properties and sensitized visible and NIR luminescence of DyIII and EuIII coordination polymers by energy transfer antenna ligands. Molecular Crystals and Liquid Crystals, 648:202–215.
  • Coban MB, 2018. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear GdIII coordination complex. Journal of Molecular Structure, 1162:109–116.
  • Deagostino A, Protti N, Alberti D, Boggio P, Bortolussi S, Altieri S and Crich SG, 2016. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Medicinal Chemistry, 8:899–917.
  • Deng Q, Zheng Q, Zuo B and Tu T, 2020. Robust NHC-palladacycles-catalyzed Suzuki−Miyaura cross-coupling of amides via C-N activation. Green Synthesis and Catalysis, 1:75–78. Diccianni JB and Diao T, 2019. Mechanisms of Nickel-Catalyzed Cross-Coupling Reactions. Trends in Chemistry, 1:830–844.
  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, 2009. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. Journal of Applied Crystallography, 42:339–341.
  • Ejsmont K, Zaleski J, Sporzyński A and Lewandowski M, 2003. 5-Formyl-2-furanboronic acid at 100 K. Acta Crystallographica Section E: Structure Reports Online, 59:o1324–o1326.
  • Gray AP, Platz RD, Henderson TR, Timothy CP, Takahashi K and Dretchen KL, 1988. Approaches to protection against nerve agent poisoning. (Naphthylvinyl)pyridine derivatives as potential antidotes. Journal of Medical Chemistry, 31:807–814.
  • Hall DG, 2011. In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials Second Edition, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany.
  • Kara H, Adams CJ, Orpen, AG, Podesta TJ, 2006. Pyridinium Boronic Acid Salts in Crystal Synthesis. New Journal of Chemisty, 30:1461–1469.
  • Khangulov SV, Pessiki PJ, Barynin VV, Ash DE and Dismukes GC, 1995. Determination of the Metal Ion Separation and Energies of the Three Lowest Electronic States of Dimanganese(II,II) Complexes and Enzymes: Catalase and Liver Arginase. Biochemistry, 34:2015–2025.
  • Li B, Li T, Aliyu MA, Li ZH and Tang W, 2019. Enantioselective Palladium‐Catalyzed Cross‐Coupling of α‐Bromo Carboxamides and Aryl Boronic Acids. Angewandte Chemie, ange.201905174.
  • Becke AD, 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38:3098–3100.
  • Becke AD, 1993. Density‐functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98:5648–5652.
  • Bondi A, 1964. Van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68:441–451.
  • Carvajal N, Uribe E, Sepu´lveda M, Mendoza C, Fuentealba B and Salas M, 1996. Chemical modification of Semele solida arginase by diethyl pyrocarbonate: Evidence for a critical histidine residue. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology, 114:367–370.
  • Coban MB, Kocak C, Kara H, Aygun M and Amjad A, 2017. Magnetic properties and sensitized visible and NIR luminescence of DyIII and EuIII coordination polymers by energy transfer antenna ligands. Molecular Crystals and Liquid Crystals, 648:202–215.
  • Coban MB, 2018. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear GdIII coordination complex. Journal of Molecular Structure, 1162:109–116.
  • Deagostino A, Protti N, Alberti D, Boggio P, Bortolussi S, Altieri S and Crich SG, 2016. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Medicinal Chemistry, 8:899–917.
  • Deng Q, Zheng Q, Zuo B and Tu T, 2020. Robust NHC-palladacycles-catalyzed Suzuki−Miyaura cross-coupling of amides via C-N activation. Green Synthesis and Catalysis, 1:75–78.
  • Diccianni JB and Diao T, 2019. Mechanisms of Nickel-Catalyzed Cross-Coupling Reactions. Trends in Chemistry, 1:830–844.
  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, 2009. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. Journal of Applied Crystallography, 42:339–341.
  • Ejsmont K, Zaleski J, Sporzyński A and Lewandowski M, 2003. 5-Formyl-2-furanboronic acid at 100 K. Acta Crystallographica Section E: Structure Reports Online, 59:o1324–o1326.
  • Gray AP, Platz RD, Henderson TR, Timothy CP, Takahashi K and Dretchen KL, 1988. Approaches to protection against nerve agent poisoning. (Naphthylvinyl)pyridine derivatives as potential antidotes. Journal of Medical Chemistry, 31:807–814.
  • Hall DG, 2011. In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials Second Edition, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany.
  • Kara H, Adams CJ, Orpen, AG, Podesta TJ, 2006. Pyridinium Boronic Acid Salts in Crystal Synthesis. New Journal of Chemisty, 30:1461–1469.
  • Khangulov SV, Pessiki PJ, Barynin VV, Ash DE and Dismukes GC, 1995. Determination of the Metal Ion Separation and Energies of the Three Lowest Electronic States of Dimanganese(II,II) Complexes and Enzymes: Catalase and Liver Arginase. Biochemistry, 34:2015–2025.
  • Li B, Li T, Aliyu MA, Li ZH and Tang W, 2019. Enantioselective Palladium‐Catalyzed Cross‐Coupling of α‐Bromo Carboxamides and Aryl Boronic Acids. Angewandte Chemie, ange.201905174.
  • Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M and van de Streek J, 2006. Mercury : visualization and analysis of crystal structures. Journal Applied Crystallography, 39:453–457.
  • Mohammadi M and Ghorbani-Choghamarani A, 2020. l -Methionine–Pd complex supported on hercynite as a highly efficient and reusable nanocatalyst for C–C cross-coupling reactions. New Journal of Chemistry, 44:2919–2929.
  • Oylumluoglu G, Coban MB, Kocak C, Aygun M and Kara H, 2017. 2-and 1-D coordination polymers of Dy (III) and Ho (III) with near infrared and visible luminescence by efficient charge-transfer antenna ligand. Journal of Molecular Structure, 1146:356–364.
  • Parry PR, Wang C, Batsanov AS, Bryce MR and Tarbit B, 2002. Functionalized Pyridylboronic Acids and Their Suzuki Cross-Coupling Reactions To Yield Novel Heteroarylpyridines. Journal of Organic Chemistry, 67:7541–7543.
  • Roughley SD and Jordan AM, 2011. The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. Journal of Medicinal Chemistry, 54:3451–3479.
  • SAINT V7.60A, Bruker-AXS 2008. Inc. Madison, Wisconsin, USA.
  • Sheldrick GM, 2008. A Short History of SHELX. Acta Crystallographica, A64:112–122.
  • Suzuki A, Diederich F, Stang PJ, 1998. Metal-catalyzed Cross-coupling Reactions Wiley-VCH, Weinheim, Germany, Chapter 2.
  • Torborg C and Beller M, 2009. Recent Applications of Palladium‐Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Advanced Synthesis and Catalysis, 351:3027–3043.
  • Yahsi Y, Gungor E, Kara H, 2015. Chlorometallate-Pyridinium Boronic Acid Salts for Crystal Engineering: Synthesis of One-, Two- and Three-Dimensional Hydrogen Bond Networks. Crystal Growth and Design, 15:2652–2660.
  • Yang W, Gao X and Wang B, 2003. Boronic acid compounds as potential pharmaceutical agents. Medicinal Research Reviews, 23:346–368.
  • Zhu Q, Saeed M, Song R, Sun T, Jiang C and Yu H, 2020. Dynamic covalent chemistry-regulated stimuli-activatable drug delivery systems for improved cancer therapy. Chinese Chemical Letters, 31:1051–1059.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Elif Güngör 0000-0002-7158-9604

Hülya Kara Subasat 0000-0002-2032-8930

Publication Date December 15, 2021
Submission Date May 11, 2021
Acceptance Date September 15, 2021
Published in Issue Year 2021

Cite

APA Güngör, E., & Kara Subasat, H. (2021). 3-Piridin Boronik Asit ve PtCN4 İçeren Yeni [HNC5H4B(OH)2–3]2[Pt(CN)4] Bileşiğin Sentezi ve Kristal Yapısı. Journal of the Institute of Science and Technology, 11(4), 2803-2809. https://doi.org/10.21597/jist.936125
AMA Güngör E, Kara Subasat H. 3-Piridin Boronik Asit ve PtCN4 İçeren Yeni [HNC5H4B(OH)2–3]2[Pt(CN)4] Bileşiğin Sentezi ve Kristal Yapısı. Iğdır Üniv. Fen Bil Enst. Der. December 2021;11(4):2803-2809. doi:10.21597/jist.936125
Chicago Güngör, Elif, and Hülya Kara Subasat. “3-Piridin Boronik Asit Ve PtCN4 İçeren Yeni [HNC5H4B(OH)2–3]2[Pt(CN)4] Bileşiğin Sentezi Ve Kristal Yapısı”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2803-9. https://doi.org/10.21597/jist.936125.
EndNote Güngör E, Kara Subasat H (December 1, 2021) 3-Piridin Boronik Asit ve PtCN4 İçeren Yeni [HNC5H4B(OH)2–3]2[Pt(CN)4] Bileşiğin Sentezi ve Kristal Yapısı. Journal of the Institute of Science and Technology 11 4 2803–2809.
IEEE E. Güngör and H. Kara Subasat, “3-Piridin Boronik Asit ve PtCN4 İçeren Yeni [HNC5H4B(OH)2–3]2[Pt(CN)4] Bileşiğin Sentezi ve Kristal Yapısı”, Iğdır Üniv. Fen Bil Enst. Der., vol. 11, no. 4, pp. 2803–2809, 2021, doi: 10.21597/jist.936125.
ISNAD Güngör, Elif - Kara Subasat, Hülya. “3-Piridin Boronik Asit Ve PtCN4 İçeren Yeni [HNC5H4B(OH)2–3]2[Pt(CN)4] Bileşiğin Sentezi Ve Kristal Yapısı”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2803-2809. https://doi.org/10.21597/jist.936125.
JAMA Güngör E, Kara Subasat H. 3-Piridin Boronik Asit ve PtCN4 İçeren Yeni [HNC5H4B(OH)2–3]2[Pt(CN)4] Bileşiğin Sentezi ve Kristal Yapısı. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:2803–2809.
MLA Güngör, Elif and Hülya Kara Subasat. “3-Piridin Boronik Asit Ve PtCN4 İçeren Yeni [HNC5H4B(OH)2–3]2[Pt(CN)4] Bileşiğin Sentezi Ve Kristal Yapısı”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2803-9, doi:10.21597/jist.936125.
Vancouver Güngör E, Kara Subasat H. 3-Piridin Boronik Asit ve PtCN4 İçeren Yeni [HNC5H4B(OH)2–3]2[Pt(CN)4] Bileşiğin Sentezi ve Kristal Yapısı. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):2803-9.