Research Article
BibTex RIS Cite

Thermal Behavior of Aqueous Cerium Oxide Nano-Suspension under the Pool Boiling Conditions

Year 2017, Volume: 7 Issue: 4, 181 - 188, 31.12.2017

Abstract

The present paper focuses on an experimental study of pool boiling characteristics of cerium

oxide (CeO2, ceria) nano-suspension on a horizontal flat copper surface at atmospheric pressure. The nanofluid

suspension is prepared by a two-step method and stabilized using Na-citrate, pH setting and ultrasonic vibration

as well. The effect of applied heat flux to the boiling surface on pool boiling heat transfer coefficient (HTC) of

cerium oxide nanofluid is experimentally examined and briefly discussed. The results illustrate that the pool boiling

HTC increases with using cerium oxide nanofluid as working fluid. Also, the results show that the critical heat flux

for cerium oxide nanofluid having 0.1 vol.% nanoparticle concentration improves up to 103% compared with the

deionized water.

References

  • Ahmed O, Hamed MS, 2012. Experimental investigation of the effect of particle deposition on pool boiling of nanofluids. Int. J. Heat Mass Transf., 55: 3423-3436.
  • Alayli GA, Demir Y, Demir N, 2008. Purification of peroxidase from latex of Euphorbia (Euphorbia amygdaloides) and investigation of kinetic properties. Asian J. Chem., 20: 477-482.
  • Bang IC, Chang SH, 2005. Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Transfer, 48: 2407-2419.
  • Barton LE, Auffan M, Bertrand M, Barakat M, Santaella C, Masion A, Borschneck D, Olivi L, Roche N, Wiesner MR, Bottero JY, 2014. Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor. Environ. Sci. Technol., 48: 7289-7296.
  • Bindhu MR, Umadevi M, 2013. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 101: 184-190.
  • Buchanan JL, Turner PR, 1992. Numerical Methods and Analysis. McGraw-Hill, New York.
  • Cicek S, Gungor AA, Adiguzel A, Nadaroglu H, 2015. Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antibacterial activity. J. Chem., 486948: 7.
  • Ciloglu D, 2017. An experimental investigation of nucleate pool boiling heat transfer of nanofluids from a hemispherical surface. Heat Transfer Eng., http://dx.doi.org/10.1080/01457632.2016.1212571.
  • Ciloglu D, Bolukbasi A, 2015. A comprehensive review on pool boiling of nanofluids. Applied Thermal Engineering, 84: 45-63.
  • Ciloglu D, Bolukbasi A, Cifci H, 2015. Experimental investigation of pool boiling heat transfer in nanofluids around spherical surfaces. Journal of the Faculty of Engineering and Architecture of Gazi University, 30: 405-415.
  • Collin B, Auffan M, Johnson AC, Kaur I, Keller AA, Lazareva A, Lead JR, Ma X, Merrifield RC, Svendsen C, White JC, Unrine J.M., 2014. Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ. Sci.: Nano, 1: 533-548.
  • Harish G, Emlin V, Sajith V, 2011. Effect of surface particle interactions during pool boiling of nanofluids. Int. J. Therm. Sci., 50: 2318-2327.
  • Herna´ndez BA, Gonza´lez R, Viesca JL, Ferna´ndez JE, Di´az FJM, Machado A, Chou R, Riba J, 2008. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265: 422-428.
  • Keller A, McFerran S, Lazareva A, Suh S, 2013. Global life cycle releases of engineered nanomaterials. J. Nanopart.Res., 15: 1-17.
  • Kim SJ, Bang IC, Buongiorno J, Hu LW, 2007. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transfer, 50: 4105-4116.
  • Liu ZH, Qiu YH, 2007. Boiling heat transfer characteristics of nano fluids jet impingement on a plate surface. J. Heat Mass Transfer, 43: 699-706.
  • Mourgues A, Virginie H, Muller T, Marylise CC, 2013. Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid. Int. J. Heat Mass Transfer, 57: 595-607.
  • Ngoc ND, Minh DL, Quang KN, Byung SK, 2011. UV absorption by cerium oxide nanoparticles/epoxy composite thin films. Adv. Nat. Sci., Nanosci. Nanotechnol., 2: 045013.
  • Okawa T, Takamura M, Kamiya T, 2012. Boiling time effect on CHF enhancement in pool boiling of nanofluids. Int. J. Heat Mass Transf., 55: 2719-2725.
  • Raveshi MR, Keshavarz AM, Mojarrad S, Amiri S, 2013. Experimental investigation of pool boiling heat transfer enhancement of alumina-water-ethylene glycol nanofluids. Exp. Thermal Fluid Sci., 44: 805-814.
  • Sarafraz MM, Hormozi F, 2014. Nucleate pool boiling heat transfer characteristics of dilute Al2O3-ethyleneglycol nanofluids. Int. Commun. Heat Mass Transf., 58: 96-104.
  • Shahmoradi Z, Etesami N, Esfahany MN, 2013. Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int. Commun. Heat Mass Transf., 47: 113-120.
  • Sheikhbahai M, Esfahany MN, Etesami N, 2012. Experimental investigation of pool boiling of Fe3O4/ethylene glycol-water nanofluid in electric field. Int. J. of Therm. Sci., 62: 149-153.
  • Tiwari AK, Ghosh P, Sarkar J, 2013. Performance comparison of the plate heat exchanger using different nanofluids. Exp. Therm. Fluid Sci., 49: 141-151.
  • Vahabi K, Dorcheh SK, 2014. Biosynthesis of silver nanoparticles by Trichoderma and its medical applications, in Biotechnology and Biology of Trichoderma, Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, Eds., chapter 29, 393-404, Elsevier, London, UK.
  • You SM, Hong YS, O’Connor JP, 1994. The onset of film boiling on small cylinders: local dryout and hydrodynamic critical heat flux mechanisms. Int. J. Heat Mass Transf., 37: 2561-2569.
  • Zhao C, Chen YK, Ren G, 2013. A study of tribological properties of water-based ceria nanofluids. Tribol. Trans., 56: 275-283.

Havuz Kaynama Şartlarında Su-bazlı Cerium Oksit Nano-süspansiyonunun Termal Davranışı

Year 2017, Volume: 7 Issue: 4, 181 - 188, 31.12.2017

Abstract

Bu çalışma, atmosfer basıncı altında yatay bir bakır plaka üzerinde cerium oksit (CeO2, ceria) nanosüspansiyonunun
havuz kaynama karakteristiklerinin deneysel olarak incelenmesi üzerine gerçekleştirilmiştir.
Nano akışkan süspansiyonu iki adım metodu ile hazırlanmıştır ve Na-citrate ilavesi, pH ayarı ve ultrasonik titreşim
uygulanarak kararlı hale getirilmiştir. Cerium oksit nano akışkanının havuz kaynama ısı transfer katsayısı üzerine
kaynama yüzeyine uygulanan ısı akısının etkisi deneysel olarak incelenmiş ve sonuçlar tartışılmıştır. Deneysel
sonuçlar, iş yapan akışkan olarak cerium oksit nano akışkanının kullanılması ile havuz kaynama ısı transfer
katsayısının arttığını göstermiştir. Ayrıca elde edilen sonuçlar, de-iyonize su ile karşılaştırıldığında, %0.1 hacimsel
konsantrasyona sahip cerium oksit nano akışkanı için kritik ısı akısında %103 artış olduğunu göstermiştir.

References

  • Ahmed O, Hamed MS, 2012. Experimental investigation of the effect of particle deposition on pool boiling of nanofluids. Int. J. Heat Mass Transf., 55: 3423-3436.
  • Alayli GA, Demir Y, Demir N, 2008. Purification of peroxidase from latex of Euphorbia (Euphorbia amygdaloides) and investigation of kinetic properties. Asian J. Chem., 20: 477-482.
  • Bang IC, Chang SH, 2005. Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Transfer, 48: 2407-2419.
  • Barton LE, Auffan M, Bertrand M, Barakat M, Santaella C, Masion A, Borschneck D, Olivi L, Roche N, Wiesner MR, Bottero JY, 2014. Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor. Environ. Sci. Technol., 48: 7289-7296.
  • Bindhu MR, Umadevi M, 2013. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 101: 184-190.
  • Buchanan JL, Turner PR, 1992. Numerical Methods and Analysis. McGraw-Hill, New York.
  • Cicek S, Gungor AA, Adiguzel A, Nadaroglu H, 2015. Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antibacterial activity. J. Chem., 486948: 7.
  • Ciloglu D, 2017. An experimental investigation of nucleate pool boiling heat transfer of nanofluids from a hemispherical surface. Heat Transfer Eng., http://dx.doi.org/10.1080/01457632.2016.1212571.
  • Ciloglu D, Bolukbasi A, 2015. A comprehensive review on pool boiling of nanofluids. Applied Thermal Engineering, 84: 45-63.
  • Ciloglu D, Bolukbasi A, Cifci H, 2015. Experimental investigation of pool boiling heat transfer in nanofluids around spherical surfaces. Journal of the Faculty of Engineering and Architecture of Gazi University, 30: 405-415.
  • Collin B, Auffan M, Johnson AC, Kaur I, Keller AA, Lazareva A, Lead JR, Ma X, Merrifield RC, Svendsen C, White JC, Unrine J.M., 2014. Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ. Sci.: Nano, 1: 533-548.
  • Harish G, Emlin V, Sajith V, 2011. Effect of surface particle interactions during pool boiling of nanofluids. Int. J. Therm. Sci., 50: 2318-2327.
  • Herna´ndez BA, Gonza´lez R, Viesca JL, Ferna´ndez JE, Di´az FJM, Machado A, Chou R, Riba J, 2008. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265: 422-428.
  • Keller A, McFerran S, Lazareva A, Suh S, 2013. Global life cycle releases of engineered nanomaterials. J. Nanopart.Res., 15: 1-17.
  • Kim SJ, Bang IC, Buongiorno J, Hu LW, 2007. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transfer, 50: 4105-4116.
  • Liu ZH, Qiu YH, 2007. Boiling heat transfer characteristics of nano fluids jet impingement on a plate surface. J. Heat Mass Transfer, 43: 699-706.
  • Mourgues A, Virginie H, Muller T, Marylise CC, 2013. Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid. Int. J. Heat Mass Transfer, 57: 595-607.
  • Ngoc ND, Minh DL, Quang KN, Byung SK, 2011. UV absorption by cerium oxide nanoparticles/epoxy composite thin films. Adv. Nat. Sci., Nanosci. Nanotechnol., 2: 045013.
  • Okawa T, Takamura M, Kamiya T, 2012. Boiling time effect on CHF enhancement in pool boiling of nanofluids. Int. J. Heat Mass Transf., 55: 2719-2725.
  • Raveshi MR, Keshavarz AM, Mojarrad S, Amiri S, 2013. Experimental investigation of pool boiling heat transfer enhancement of alumina-water-ethylene glycol nanofluids. Exp. Thermal Fluid Sci., 44: 805-814.
  • Sarafraz MM, Hormozi F, 2014. Nucleate pool boiling heat transfer characteristics of dilute Al2O3-ethyleneglycol nanofluids. Int. Commun. Heat Mass Transf., 58: 96-104.
  • Shahmoradi Z, Etesami N, Esfahany MN, 2013. Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int. Commun. Heat Mass Transf., 47: 113-120.
  • Sheikhbahai M, Esfahany MN, Etesami N, 2012. Experimental investigation of pool boiling of Fe3O4/ethylene glycol-water nanofluid in electric field. Int. J. of Therm. Sci., 62: 149-153.
  • Tiwari AK, Ghosh P, Sarkar J, 2013. Performance comparison of the plate heat exchanger using different nanofluids. Exp. Therm. Fluid Sci., 49: 141-151.
  • Vahabi K, Dorcheh SK, 2014. Biosynthesis of silver nanoparticles by Trichoderma and its medical applications, in Biotechnology and Biology of Trichoderma, Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, Eds., chapter 29, 393-404, Elsevier, London, UK.
  • You SM, Hong YS, O’Connor JP, 1994. The onset of film boiling on small cylinders: local dryout and hydrodynamic critical heat flux mechanisms. Int. J. Heat Mass Transf., 37: 2561-2569.
  • Zhao C, Chen YK, Ren G, 2013. A study of tribological properties of water-based ceria nanofluids. Tribol. Trans., 56: 275-283.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Doğan Çiloğlu

Publication Date December 31, 2017
Submission Date March 27, 2017
Acceptance Date July 10, 2017
Published in Issue Year 2017 Volume: 7 Issue: 4

Cite

APA Çiloğlu, D. (2017). Havuz Kaynama Şartlarında Su-bazlı Cerium Oksit Nano-süspansiyonunun Termal Davranışı. Journal of the Institute of Science and Technology, 7(4), 181-188.
AMA Çiloğlu D. Havuz Kaynama Şartlarında Su-bazlı Cerium Oksit Nano-süspansiyonunun Termal Davranışı. J. Inst. Sci. and Tech. December 2017;7(4):181-188.
Chicago Çiloğlu, Doğan. “Havuz Kaynama Şartlarında Su-Bazlı Cerium Oksit Nano-süspansiyonunun Termal Davranışı”. Journal of the Institute of Science and Technology 7, no. 4 (December 2017): 181-88.
EndNote Çiloğlu D (December 1, 2017) Havuz Kaynama Şartlarında Su-bazlı Cerium Oksit Nano-süspansiyonunun Termal Davranışı. Journal of the Institute of Science and Technology 7 4 181–188.
IEEE D. Çiloğlu, “Havuz Kaynama Şartlarında Su-bazlı Cerium Oksit Nano-süspansiyonunun Termal Davranışı”, J. Inst. Sci. and Tech., vol. 7, no. 4, pp. 181–188, 2017.
ISNAD Çiloğlu, Doğan. “Havuz Kaynama Şartlarında Su-Bazlı Cerium Oksit Nano-süspansiyonunun Termal Davranışı”. Journal of the Institute of Science and Technology 7/4 (December 2017), 181-188.
JAMA Çiloğlu D. Havuz Kaynama Şartlarında Su-bazlı Cerium Oksit Nano-süspansiyonunun Termal Davranışı. J. Inst. Sci. and Tech. 2017;7:181–188.
MLA Çiloğlu, Doğan. “Havuz Kaynama Şartlarında Su-Bazlı Cerium Oksit Nano-süspansiyonunun Termal Davranışı”. Journal of the Institute of Science and Technology, vol. 7, no. 4, 2017, pp. 181-8.
Vancouver Çiloğlu D. Havuz Kaynama Şartlarında Su-bazlı Cerium Oksit Nano-süspansiyonunun Termal Davranışı. J. Inst. Sci. and Tech. 2017;7(4):181-8.