Research Article
BibTex RIS Cite

Kotanjant Demette Modified Riemannian Extension’a Göre Projektif Vektör Alanları

Year 2019, Volume: 9 Issue: 1, 389 - 396, 01.03.2019
https://doi.org/10.21597/jist.462637

Abstract

, boyutlu  Riemannian manifoldunun kotanjant
demeti olsun. Bu çalışmadaki amacımız kotanjant demette
modifiye edilmiş Riemann genişlemesine
göre
fibre koruyan projektif vektör
alanlarının karakterizasyonunu yapmaktır. 

References

  • Gezer A, 2011. On infinitesimal holomorphically projective transformations on the tangent bundles with respect to the Sasaki metric, Proc. Est. Acad. Sci., 60(3): 149–157.
  • Gezer A, Bilen L, Çakmak A, 2015. Properties of modified Riemannian extensions, Zh. Mat. Fiz. Anal. Geom., 11(2): 159–173.
  • Hasegawa I, Yamauchi K, 2003. Infinitesimal projective transformations on tangent bundles with lift connection, Scientiae Mathematicae Japonicae., 57(3): 469-483, e7, 489-503.
  • Yamauchi K, 1998. On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds, Ann Rep. Asahikawa. Med. Coll., 19: 49-55.
  • Yamauchi K, 1999. On infinitesimal projective transformations of the tangent bundles with the metric II+III, Ann Rep. Asahikawa. Med. Coll., (20): 67-72.
  • Yano K, Ishihara S, 1973. Tangent and Cotangent Bundles, Marcel Dekker, Inc, New York.

Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension

Year 2019, Volume: 9 Issue: 1, 389 - 396, 01.03.2019
https://doi.org/10.21597/jist.462637

Abstract

Let  be the cotangent bundle of an dimensional Riemannian manifold . The purpose of the present paper is give a characterization of
fibre-preserving projective vector fields with respect to modified Riemannian
extension.

References

  • Gezer A, 2011. On infinitesimal holomorphically projective transformations on the tangent bundles with respect to the Sasaki metric, Proc. Est. Acad. Sci., 60(3): 149–157.
  • Gezer A, Bilen L, Çakmak A, 2015. Properties of modified Riemannian extensions, Zh. Mat. Fiz. Anal. Geom., 11(2): 159–173.
  • Hasegawa I, Yamauchi K, 2003. Infinitesimal projective transformations on tangent bundles with lift connection, Scientiae Mathematicae Japonicae., 57(3): 469-483, e7, 489-503.
  • Yamauchi K, 1998. On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds, Ann Rep. Asahikawa. Med. Coll., 19: 49-55.
  • Yamauchi K, 1999. On infinitesimal projective transformations of the tangent bundles with the metric II+III, Ann Rep. Asahikawa. Med. Coll., (20): 67-72.
  • Yano K, Ishihara S, 1973. Tangent and Cotangent Bundles, Marcel Dekker, Inc, New York.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Matematik / Mathematics
Authors

Lokman Bilen 0000-0001-8240-5359

Publication Date March 1, 2019
Submission Date September 21, 2018
Acceptance Date October 25, 2018
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Bilen, L. (2019). Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. Journal of the Institute of Science and Technology, 9(1), 389-396. https://doi.org/10.21597/jist.462637
AMA Bilen L. Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. J. Inst. Sci. and Tech. March 2019;9(1):389-396. doi:10.21597/jist.462637
Chicago Bilen, Lokman. “Projective Vector Fields on the Cotangent Bundle With Modified Riemannian Extension”. Journal of the Institute of Science and Technology 9, no. 1 (March 2019): 389-96. https://doi.org/10.21597/jist.462637.
EndNote Bilen L (March 1, 2019) Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. Journal of the Institute of Science and Technology 9 1 389–396.
IEEE L. Bilen, “Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension”, J. Inst. Sci. and Tech., vol. 9, no. 1, pp. 389–396, 2019, doi: 10.21597/jist.462637.
ISNAD Bilen, Lokman. “Projective Vector Fields on the Cotangent Bundle With Modified Riemannian Extension”. Journal of the Institute of Science and Technology 9/1 (March 2019), 389-396. https://doi.org/10.21597/jist.462637.
JAMA Bilen L. Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. J. Inst. Sci. and Tech. 2019;9:389–396.
MLA Bilen, Lokman. “Projective Vector Fields on the Cotangent Bundle With Modified Riemannian Extension”. Journal of the Institute of Science and Technology, vol. 9, no. 1, 2019, pp. 389-96, doi:10.21597/jist.462637.
Vancouver Bilen L. Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. J. Inst. Sci. and Tech. 2019;9(1):389-96.