Research Article
BibTex RIS Cite

Synthesis of Cystein-Gold Nanoparticles as Nanocarriers of Disulfıram used in Alcohol Treament

Year 2019, Volume: 9 Issue: 1, 479 - 486, 01.03.2019
https://doi.org/10.21597/jist.467229

Abstract

Disulfiram (DS) is a carbamate derivative used
as an alcohol deterrent. It is a relatively non-toxic substance when
administered alone, but it significantly changes metabolism with alcohol.
Disulfiram acts by inhibiting aldehyde dehydrogenase. If alcohol is used after
disulfiram is administered, the concentration of acetaldehyde increases,
followed by systemic vasodilatation, respiratory distress, nausea, hypotension,
and other symptoms (acetaldehyde syndrome). It is possible that disulfiram is
acting more rapidly with nanostructures such as gold nanoparticles (Au NP).
Gold nanoparticles are higher potency non-toxic biomarkers when compared to
quantum dots, and in this study, cysteine ​​(Cys) is focused on synthesis with
Au NP as a reducing and protective agent. Gold nanoparticles of about 5 nm in
diameter were conjugated to cysteine ​​(Cys) and conjugated to Cys-Au NPs as
nanostructures of disulfiram, (Synthesis of gold nanoparticles, mixing in fresh
Cys solutions and mixing the mixture overnight at 37 ° C in a water bath) were characterized
by scanning electron microscopy (SEM), atomic force microscopy (AFM), permeable
electron microscopy (TEM), FT-IR,
raman and UV-Vis
spectroscopy.

References

  • Aragay G, Pons J, Merkoci A, 2011. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chemical Reviews, 111: 3433-3458.
  • Aryal S, Remant B K C, Dharmaraj N, Bhattarai N, Kim C H, Kim H Y, 2006. Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles. Spectrochimica Acta Part, 63: 160-163.
  • Bulatov A V, Petrova A V, Vishnikin A B, Moskvin L N, 2013. Stepwise injection spectrophotometric determination of cysteine in biologically active supplements and fodders. Microchemical Journal, 110: 369-373.
  • Dasary S S, Singh A K, Senapati D, Yu H, Ray P C, 2009. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. Journal of the American Chemical Society, 131: 13806–13812.
  • Di F R, Selloni A, Molinari E, 2002. DFT Study of cysteine adsorption on Au(111). Journal of Physical Chemistry B, 107: 1151−1156.
  • Ding N, Zhao H, Peng W, He Y, Zhou Y, Yuan, L, Zhang Y. A, 2012. Simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids and Surfaces A, 395: 161−167.
  • Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A, 2012. Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensor Actuat B-Chemical, 161: 880-885.
  • Hormozi-Nezhad M R, Seyedhosseini E, Robatjazi H, 2012. Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles. Sciare in Iran, 19: 958−963.
  • Jafarizad A, Aghanejad A, Sevim M, Metin Ö, Barar J, Omidi Y, Ekinci D, 2017. Gold Nanoparticles and Reduced Graphene Oxide-Gold Nanoparticle Composite Materials as Covalent Drug Delivery Systems for Breast Cancer Treatment. Chemistry Select, 2: 6663-6672.
  • Jongjinakool S, Palasak K, Bousod N, Teepoo S, 2014. Gold nanoparticles-based colorimetric sensor for cysteine detection. Energy Procedia, 56: 10 – 18.
  • Kang T F, Wang F, Lu LP, Zhang Y, Liu T S, 2010. Methyl parathion sensors based on gold nanoparticles nafion film modified glassy carbon electrodes. Sensor Actuat B-Chemical, 145: 104-109.
  • Pan Q, Zhang R, Bai Y, He N, Lu Z, 2008. An electrochemical approach for detection of specific DNA-binding protein by gold nanoparticle-catalyzed silver enhancement. Analytical Biochemistry, 375: 179-186.
  • Petean I, Tomoaıa G H, Horovıtz O, Mocanu A, Tomoaıa-Cotısel M, 2008. Cysteine mediated assembly of gold nanoparticles. Optoelectronics and Advanced Materıals, 10: 2289 – 2292.
  • Robert G A, Vitaliy F, Nataliya T, Elvio C, Kevin C, Prince J, 2014. Mechanisms of aggregation of cysteine functionalized gold nanoparticles. Journal of Physical Chemistry C, 118: 10481−10487.
  • Sasaki Y C, Yasuda K, Suzuki Y, Ishibashi T, Satoh I, Fujiki Y, Ishiwata S, 1997. Two-dimensional 5arrangement of a functional protein by cysteine-gold interaction: Enzyme activity and characterization of a protein monolayer on a gold substrate. Biophysical Journal, 72: 1842−1848.
  • Sharon E, Golub E, Niazov-Elkan A, Balogh D, Willner I, 2014. Analysis of telomerase by the telomeric Hemin/G-Quadruplex- controlled aggregation of Au nanoparticles in the presence of cysteine. Analytical Chemistry, 86: 3153−3158.
  • Singh R, Verm R, Kaushik A, Sumana G, Sood S, Gupta R K, Malhotra B D, 2011. Chitosan–iron oxide 5 nanocomposite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae 6 detection causing sexually transmitted disease. Biosens Bioelectron, 26: 2967-2974.
  • Su H, Ma Q, Shang K, Liu T, Yin H, Ai S, 2012. Gold nanoparticles as colorimetric sensor: A case study on E. Coli O157:H7 as a model for Gram-negative bacteria. Sensors and Actuators B: Chemical, 161: 298- 303.
  • Sudeep P K, Joseph S T S, Thomas K G, 2005. Selective detection of cysteine and glutathione using gold nanorods. Journal of the American Chemical Society, 127: 6516−6517.
  • Tengvall P, Lestelius M, Liedberg B, Lundstroem I, 1992. Plasma protein and antisera interactions with L-cysteine and 3-mercaptopropionic acid monolayers on gold surfaces. Langmuir, 8: 1236−1238.
  • Thaxton C S, Georganopoulou D G, Mirkin C A, 2006. Gold nanoparticle probes for the detection of nucleic acid targets. Clinica Chimica Acta, 363: 120-126.
  • Vallee A, Humblot V, Pradier CM, 2010. Peptide interactions with metal and oxide surfaces. Accounts of Chemical Research, 43: 1297−1306.
  • Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, Sadeghizadeh M, 2013. Detection of pseudomonas syringae pathovars by thiol-linked DNA–gold nanoparticle probes. Sensor Actuat B-Chemical, 181: 644-651.

Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi

Year 2019, Volume: 9 Issue: 1, 479 - 486, 01.03.2019
https://doi.org/10.21597/jist.467229

Abstract

Disülfiram (DS), alkol caydırıcı
olarak kullanılan bir karbamat türevidir. Tek başına uygulandığında nispeten
toksik olmayan bir maddedir, ancak alkol ile birlikte metabolizmayı belirgin
bir şekilde değiştirmektedir.
Disülfiram, aldehit
dehidrojenazını inhibe ederek etki etmektedir. Disülfiram uygulandıktan sonra
alkol alınırsa, kanda asetaldehit konsantrasyonu artar, ardından sistemik
vazodilatasyon, solunum güçlüğü, bulantı, hipotansiyon ve diğer semptomlar
(asetaldehit sendromu) izlenir. Disülfiramın daha hızlı bir şekilde etki
göstermesi altın nanopartiküller (Au NP) gibi nanotaşıyıcılarla mümkün
olmaktadır. Altın nanopartiküller, kuantum noktalarla karşılaştırıldığında daha
yüksek potansiyelli toksik olmayan biyomarkerlardır ve bu çalışma kapsamında,
sisteinin (Cys) indirgeyici ve koruyucu ajan olarak Au NP ile sentezine
odaklanılmıştır
. Yaklaşık 5 nm çapında altın
nanopartiküller, Cys ile modifiye edilen ve disülfiramın nanotaşıyıcısı olarak
Cys-Au NP’ler şeklinde konjugasyonu gerçekleştirilerek, (Altın nanopartiküllerin
sentezi, taze Cys solüsyonlarına karıştırılarak karışım gece boyunca 37°C'de
bir su banyosu içinde karıştırılarak) özellikleri taramalı elektron mikroskobu
(SEM), atomik kuvvet mıkroskobu (AFM) , geçirgen elektron mıkroskobu (TEM),
FT-IR,
raman ve UV-Vis spektroskopisi ile değerlendirildi.

References

  • Aragay G, Pons J, Merkoci A, 2011. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chemical Reviews, 111: 3433-3458.
  • Aryal S, Remant B K C, Dharmaraj N, Bhattarai N, Kim C H, Kim H Y, 2006. Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles. Spectrochimica Acta Part, 63: 160-163.
  • Bulatov A V, Petrova A V, Vishnikin A B, Moskvin L N, 2013. Stepwise injection spectrophotometric determination of cysteine in biologically active supplements and fodders. Microchemical Journal, 110: 369-373.
  • Dasary S S, Singh A K, Senapati D, Yu H, Ray P C, 2009. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. Journal of the American Chemical Society, 131: 13806–13812.
  • Di F R, Selloni A, Molinari E, 2002. DFT Study of cysteine adsorption on Au(111). Journal of Physical Chemistry B, 107: 1151−1156.
  • Ding N, Zhao H, Peng W, He Y, Zhou Y, Yuan, L, Zhang Y. A, 2012. Simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids and Surfaces A, 395: 161−167.
  • Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A, 2012. Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensor Actuat B-Chemical, 161: 880-885.
  • Hormozi-Nezhad M R, Seyedhosseini E, Robatjazi H, 2012. Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles. Sciare in Iran, 19: 958−963.
  • Jafarizad A, Aghanejad A, Sevim M, Metin Ö, Barar J, Omidi Y, Ekinci D, 2017. Gold Nanoparticles and Reduced Graphene Oxide-Gold Nanoparticle Composite Materials as Covalent Drug Delivery Systems for Breast Cancer Treatment. Chemistry Select, 2: 6663-6672.
  • Jongjinakool S, Palasak K, Bousod N, Teepoo S, 2014. Gold nanoparticles-based colorimetric sensor for cysteine detection. Energy Procedia, 56: 10 – 18.
  • Kang T F, Wang F, Lu LP, Zhang Y, Liu T S, 2010. Methyl parathion sensors based on gold nanoparticles nafion film modified glassy carbon electrodes. Sensor Actuat B-Chemical, 145: 104-109.
  • Pan Q, Zhang R, Bai Y, He N, Lu Z, 2008. An electrochemical approach for detection of specific DNA-binding protein by gold nanoparticle-catalyzed silver enhancement. Analytical Biochemistry, 375: 179-186.
  • Petean I, Tomoaıa G H, Horovıtz O, Mocanu A, Tomoaıa-Cotısel M, 2008. Cysteine mediated assembly of gold nanoparticles. Optoelectronics and Advanced Materıals, 10: 2289 – 2292.
  • Robert G A, Vitaliy F, Nataliya T, Elvio C, Kevin C, Prince J, 2014. Mechanisms of aggregation of cysteine functionalized gold nanoparticles. Journal of Physical Chemistry C, 118: 10481−10487.
  • Sasaki Y C, Yasuda K, Suzuki Y, Ishibashi T, Satoh I, Fujiki Y, Ishiwata S, 1997. Two-dimensional 5arrangement of a functional protein by cysteine-gold interaction: Enzyme activity and characterization of a protein monolayer on a gold substrate. Biophysical Journal, 72: 1842−1848.
  • Sharon E, Golub E, Niazov-Elkan A, Balogh D, Willner I, 2014. Analysis of telomerase by the telomeric Hemin/G-Quadruplex- controlled aggregation of Au nanoparticles in the presence of cysteine. Analytical Chemistry, 86: 3153−3158.
  • Singh R, Verm R, Kaushik A, Sumana G, Sood S, Gupta R K, Malhotra B D, 2011. Chitosan–iron oxide 5 nanocomposite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae 6 detection causing sexually transmitted disease. Biosens Bioelectron, 26: 2967-2974.
  • Su H, Ma Q, Shang K, Liu T, Yin H, Ai S, 2012. Gold nanoparticles as colorimetric sensor: A case study on E. Coli O157:H7 as a model for Gram-negative bacteria. Sensors and Actuators B: Chemical, 161: 298- 303.
  • Sudeep P K, Joseph S T S, Thomas K G, 2005. Selective detection of cysteine and glutathione using gold nanorods. Journal of the American Chemical Society, 127: 6516−6517.
  • Tengvall P, Lestelius M, Liedberg B, Lundstroem I, 1992. Plasma protein and antisera interactions with L-cysteine and 3-mercaptopropionic acid monolayers on gold surfaces. Langmuir, 8: 1236−1238.
  • Thaxton C S, Georganopoulou D G, Mirkin C A, 2006. Gold nanoparticle probes for the detection of nucleic acid targets. Clinica Chimica Acta, 363: 120-126.
  • Vallee A, Humblot V, Pradier CM, 2010. Peptide interactions with metal and oxide surfaces. Accounts of Chemical Research, 43: 1297−1306.
  • Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, Sadeghizadeh M, 2013. Detection of pseudomonas syringae pathovars by thiol-linked DNA–gold nanoparticle probes. Sensor Actuat B-Chemical, 181: 644-651.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Fatma Bayrakçeken Nişancı 0000-0002-3166-2301

Publication Date March 1, 2019
Submission Date October 4, 2018
Acceptance Date November 13, 2018
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Bayrakçeken Nişancı, F. (2019). Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi. Journal of the Institute of Science and Technology, 9(1), 479-486. https://doi.org/10.21597/jist.467229
AMA Bayrakçeken Nişancı F. Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi. J. Inst. Sci. and Tech. March 2019;9(1):479-486. doi:10.21597/jist.467229
Chicago Bayrakçeken Nişancı, Fatma. “Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi”. Journal of the Institute of Science and Technology 9, no. 1 (March 2019): 479-86. https://doi.org/10.21597/jist.467229.
EndNote Bayrakçeken Nişancı F (March 1, 2019) Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi. Journal of the Institute of Science and Technology 9 1 479–486.
IEEE F. Bayrakçeken Nişancı, “Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi”, J. Inst. Sci. and Tech., vol. 9, no. 1, pp. 479–486, 2019, doi: 10.21597/jist.467229.
ISNAD Bayrakçeken Nişancı, Fatma. “Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi”. Journal of the Institute of Science and Technology 9/1 (March 2019), 479-486. https://doi.org/10.21597/jist.467229.
JAMA Bayrakçeken Nişancı F. Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi. J. Inst. Sci. and Tech. 2019;9:479–486.
MLA Bayrakçeken Nişancı, Fatma. “Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi”. Journal of the Institute of Science and Technology, vol. 9, no. 1, 2019, pp. 479-86, doi:10.21597/jist.467229.
Vancouver Bayrakçeken Nişancı F. Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi. J. Inst. Sci. and Tech. 2019;9(1):479-86.