Research Article
BibTex RIS Cite

Superconducting magnetic hysteresis behaviors in ABO3-type Perovskites

Year 2020, Volume: 10 Issue: 1, 171 - 178, 01.03.2020
https://doi.org/10.21597/jist.592160

Abstract

Superconducting magnetic hysteresis properties of the ABO3-type Perovskites are investigated by the effective field theory. It is found that the core (B) atom of the ABO3 exhibits type II superconducting hysteresis behaviors when it interacts antiferromagnetically with the shell (A and O) atoms. Therefore, the magnetic hysteresis curve of B atoms in the ABO3 has binary coercive field points (lower coercivity; Hc1, and upper coercivity; Hc2). B atoms have a Meissner state at HHc2. Our results indicate that the superconducting properties of the ABO3-type Perovskites result from the antiferromagnetic interaction between the shell (O) and core (B) atoms.,>

Supporting Institution

Adıyaman Üniversitesi

Project Number

FEFMAP/2018-0003

Thanks

This work was supported by Grant No FEFMAP/2018-0003 from Adiyaman University of Research Project Coordination (ADYUBAP), Turkey.

References

  • Arejdal M, Bahmad L, Abbassi A, Benyoussef A, 2015. Magnetic properties of the double perovskite Ba2NiUO6. Physica A: Statistical Mechanics its Applications, 437 375-381.
  • Assadi MK, Bakhoda S, Saidur R, Hanaei H, 2018. Recent progress in perovskite solar cells. Renewable Sustainable Energy Reviews, 81 2812-2822.
  • Braga PR, Granado DR, Guimaraes MS, Wotzasek C, 2016. Effective field theories for superconducting systems with multiple Fermi surfaces. Annals of Physics, 374 1-15. doi:https://doi.org/10.1016/j.aop.2016.08.005
  • Brey L, Calderón M, Sarma SD, Guinea F, 2006. Mean-field theory for double perovskites: Coupling between itinerant electron spins and localized spins. Physical Review B, 74 (9): 094429.
  • Cava RJ, Batlogg B, Krajewski J, Farrow R, Rupp Jr L, White A, Short K, Peck W, Kometani T, 1988. Superconductivity near 30 K without copper: the Ba0. 6K0. 4BiO3 perovskite. Nature, 332 (6167): 814. Dang HT, Millis AJ, 2013. Theory of ferromagnetism in vanadium-oxide based perovskites. Physical Review B, 87 (15): 155127.
  • Deviren B, Polat Y, Keskin M, 2011. Phase diagrams in mixed spin-3/2 and spin-2 Ising system with two alternative layers within the effective-field theory. Chinese Physics B, 20 060507. doi:10.1088/1674-1056/20/6/060507
  • Dongxue L, Liu Y, 2017. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. Journal of Semiconductors, 38 (1): 011005. doi:10.1088/1674-4926/38/1/011005
  • Duran A, 2018. Surface Superconductivity in Ni50Mn36Sn14 Heusler Alloy. Journal of Superconductivity Novel Magnetism, 31 (12): 4053-4062. doi:10.1007/s10948-018-4686-8
  • El Rhazouani O, Benyoussef A, Kenz AE, 2015. Phase diagram of the double perovskite Sr2CrReO6: Effective-field theory. Journal of Magnetism and Magnetic Materials, 377 319-324. doi:10.1016/j.jmmm.2014.10.127
  • El Rhazouani O, Benyoussef A, Naji S, El Kenz A, 2014. Magnetic properties of double perovskite Sr2CrReO6: Mean field approximation and Monte Carlo simulation. Physica A: Statistical Mechanics its Applications, 397 31-39.
  • El Rhazouani O, Zarhri Z, Benyoussef A, El Kenz A, 2016. Magnetic properties of the fully spin-polarized Sr2CrOsO6 double perovskite: A Monte Carlo simulation. Physics Letters A, 380 (13): 1241-1246.
  • El Yadari M, Bahmad L, El Kenz A, Benyoussef A, 2013. Monte Carlo study of the double perovskite nano Sr2VMoO6. Journal of Alloys Compounds, 579 86-91.
  • Estrada F, Guzmán E, Navarro O, Avignon M, 2018. Curie temperature behavior in half-metallic ferromagnetic double perovskites within the electronic correlation picture. Physical Review B, 97 (19): 195155.
  • Ihringer J, Maichle J, Prandl W, Hewat A, Wroblewski T, 1991. Crystal structure of the ceramic superconductor BaPb 0.75 Bi 0.25 O 3. Zeitschrift für Physik B Condensed Matter, 82 (2): 171-176.
  • Kaneyoshi T, 1993. Differential operator technique in the Ising spin systems. Acta Physica Polonica Series A, 83 703-703.
  • Kantar E, 2017. Superconductivity-like phenomena in an ferrimagnetic endohedral fullerene with diluted magnetic surface. Solid State Communications, 263 31-37. doi:https://doi.org/10.1016/j.ssc.2017.07.006
  • Keskin M, Canko O, Polat Y, 2008. Dynamic Phase Transitions in the Kinetic Mixed Spin-1/2 and Spin-1 Ising Ferrimagnetic System under a Time-Dependent Magnetic Field. Journal of Korean Physical Society, 53 497. doi:10.3938/jkps.53.497
  • Keskin M, Polat Y, 2009. Phase diagrams of a nonequilibrium mixed spin-3/2 and spin-2 Ising system in an oscillating magnetic field. Journal of Magnetism and Magnetic Materials, 321 3905-3912. doi:10.1016/j.jmmm.2009.07.052
  • Keskin M, Şarlı N, 2018. Superconducting Phase Diagram of the Yttrium, Barium, and YBa-core in YBa2Cu3O7–δ by an Ising Model. Journal of Experimental Theoretical Physics, 127 (3): 516-524. doi:10.1134/s1063776118090157
  • Kim HS, Im SH, Park NG, 2014. Organolead Halide Perovskite: New Horizons in Solar Cell Research. The Journal of Physical Chemistry C, 118 (11): 5615-5625. doi:10.1021/jp409025w
  • Labrim H, Jabar A, Belhaj A, Ziti S, Bahmad L, Laânab L, Benyoussef A, 2015. Magnetic proprieties of La2FeCoO6 double perovskite: Monte Carlo study. Journal of Alloys Compounds, 641 37-42.
  • Lamrani AF, Ouchri M, Benyoussef A, Belaiche M, Loulidi M, 2013. Half-metallic antiferromagnetic behavior of double perovskite Sr2OsMoO6: First principle calculations. Journal of Magnetism Magnetic Materials, 345 195-200.
  • Lang L, Yang JH, Liu HR, Xiang H, Gong X, 2014a. First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Physics Letters A, 378 (3): 290-293.
  • Lang L, Yang JH, Liu HR, Xiang HJ, Gong XG, 2014b. First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Physics Letters A, 378 (3): 290-293. doi:10.1016/j.physleta.2013.11.018
  • Luo S, Daoud WA, 2015. Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 3 (17): 8992-9010. doi:10.1039/c4ta04953e
  • Masrour R, Jabar A, Benyoussef A, Hamedoun M, Hlil E, 2016. Monte Carlo simulation study of magnetocaloric effect in NdMnO3 perovskite. Journal of Magnetism Magnetic Materials, 401 91-95.
  • Mitchell R. (2002). Perovskites: Modern and Ancient Almaz Press Inc. In: Ontario, Canada.
  • Mitchell RH, Chakhmouradian AR, Woodward PM, 2000. Crystal chemistry of perovskite-type compounds in the tausonite-loparite series,(Sr 1− 2 x Na x La x) TiO 3. Physics Chemistry of Minerals, 27 (8): 583-589.
  • Moradi Z, Fallah H, Hajimahmoodzadeh M, 2018. Nanocomposite perovskite based optical sensor with broadband absorption spectrum. Sensors Actuators A: Physical, 280 47-51.
  • Ngantso GD, Benyoussef A, El Kenz A, 2016. Monte Carlo study of magnetic properties and critical behavior of Sr2CrMoO6. Current Applied Physics, 16 (2): 211-219.
  • Padilha IT, de Sousa JR, Neto MA, Salmon OR, Viana J, 2013. Thermodynamics properties of copper-oxide superconductors described by an Ising frustrated model. Physica A: Statistical Mechanics its Applications, 392 (20): 4897-4904.
  • Pandu R, 2014. CrFe2O4–BiFeO3 Perovskite Multiferroic Nanocomposites–A Review. Material Science Research India, 11 (2): 128-145.
  • Sampathkumar T, Srinivasan S, Nagarajan T, Balachandran U, 1994. Properties of YBa2Cu3O7− δ-BaBiO3 composite superconductors. Applied Superconductivity, 2 (1): 29-34.
  • Sanyal P, Majumdar P, 2009. Magnetic model for the ordered double perovskites. Physical Review B, 80 (5): 054411.
  • Slassi A, 2017. Low field magnetocaloric effect in the double perovskite Sr2CrMoO6: Monte Carlo simulation. Computational Condensed Matter, 11 55-59.
  • Şarlı N, 2015. Superconductor core effect of the body centered orthorhombic nanolattice structure. Journal of Superconductivity Novel Magnetism, 28 (8): 2355-2363.
  • Şarlı N, Akbudak S, Polat Y, Ellialtioglu R, 2015. Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence. Physica A: Statistical Mechanics and its Applications, 434. doi:10.1016/j.physa.2015.04.002
  • Şarlı N, Keskin M, 2019a. Coexistence of ferromagnetism and superconductivity in NiBi-binary alloy. Chinese Journal of Physics, 60 502-509. doi:https://doi.org/10.1016/j.cjph.2019.05.029
  • Şarlı N, Keskin M, 2019b. Effects of the Copper and Oxygen atoms of the CuO-plane on magnetic properties of the YBCO by using the effective-field theory. Chinese Journal of Physics, 59 256-264. doi:https://doi.org/10.1016/j.cjph.2019.03.007
  • Tolman KR, 2016. Empirical Models for Structural Effects of A-Site Point Defects and Ordering in Perovskites.
  • Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A, 2000. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid state ionics, 138 (1-2): 79-90.
  • Weber M, Bass M, DeMars G, 1971. Laser action and spectroscopic properties of Er3+ in YAlO3. Journal of Applied Physics, 42 (1): 301-305.
  • Yu Z, 2016. Effective-mass model and magneto-optical properties in hybrid perovskites. Scientific Reports, 6 28576.
  • Zhandun V, Zinenko V, 2016. The effect of structural ordering on the magnetic, electronic, and optical properties of the LaPbMnSbO6 double perovskite. Journal of Alloys Compounds, 671 184-191.
  • Zhu XH, Xiao XB, Chen XR, Liu BG, 2017. Electronic structure, magnetism and optical properties of orthorhombic GdFeO 3 from first principles. RSC Advances, 7 (7): 4054-4061.

ABO3-tipi Perovskitlerin Süper iletken Manyetik Histerezis Davranışları

Year 2020, Volume: 10 Issue: 1, 171 - 178, 01.03.2020
https://doi.org/10.21597/jist.592160

Abstract

ABO3-tipi perovskitlerin süperiletken manyetik histerezis özellikleri Kaneyoshi tarafından geliştirilen etkin alan teorisi ile incelendi. ABO3’ün merkez atomu (B) kabuk atomları (A ve O) ile antiferromanyetik etkileştiğinde tip II süperiletken davranışı gösteriyor. Böylece, B atomunun manyetik histerezis eğrisi iki zorlayıcı alan noktasına sahip oluyor (düşük zorlayıcı nokta; Hc1 ve yüksek zorlayıcı nokta; Hc2). B atomu HHc2 olduğunda normal durumdadır. Sonuçlarımıza göre ABO3-tipi perovskitlerin süper iletkenlik özellikleri kabuk (O) ve merkez (B) atomlarının antiferromanyetik etkileşmesinin bir sonucudur.ğunda>

Project Number

FEFMAP/2018-0003

References

  • Arejdal M, Bahmad L, Abbassi A, Benyoussef A, 2015. Magnetic properties of the double perovskite Ba2NiUO6. Physica A: Statistical Mechanics its Applications, 437 375-381.
  • Assadi MK, Bakhoda S, Saidur R, Hanaei H, 2018. Recent progress in perovskite solar cells. Renewable Sustainable Energy Reviews, 81 2812-2822.
  • Braga PR, Granado DR, Guimaraes MS, Wotzasek C, 2016. Effective field theories for superconducting systems with multiple Fermi surfaces. Annals of Physics, 374 1-15. doi:https://doi.org/10.1016/j.aop.2016.08.005
  • Brey L, Calderón M, Sarma SD, Guinea F, 2006. Mean-field theory for double perovskites: Coupling between itinerant electron spins and localized spins. Physical Review B, 74 (9): 094429.
  • Cava RJ, Batlogg B, Krajewski J, Farrow R, Rupp Jr L, White A, Short K, Peck W, Kometani T, 1988. Superconductivity near 30 K without copper: the Ba0. 6K0. 4BiO3 perovskite. Nature, 332 (6167): 814. Dang HT, Millis AJ, 2013. Theory of ferromagnetism in vanadium-oxide based perovskites. Physical Review B, 87 (15): 155127.
  • Deviren B, Polat Y, Keskin M, 2011. Phase diagrams in mixed spin-3/2 and spin-2 Ising system with two alternative layers within the effective-field theory. Chinese Physics B, 20 060507. doi:10.1088/1674-1056/20/6/060507
  • Dongxue L, Liu Y, 2017. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. Journal of Semiconductors, 38 (1): 011005. doi:10.1088/1674-4926/38/1/011005
  • Duran A, 2018. Surface Superconductivity in Ni50Mn36Sn14 Heusler Alloy. Journal of Superconductivity Novel Magnetism, 31 (12): 4053-4062. doi:10.1007/s10948-018-4686-8
  • El Rhazouani O, Benyoussef A, Kenz AE, 2015. Phase diagram of the double perovskite Sr2CrReO6: Effective-field theory. Journal of Magnetism and Magnetic Materials, 377 319-324. doi:10.1016/j.jmmm.2014.10.127
  • El Rhazouani O, Benyoussef A, Naji S, El Kenz A, 2014. Magnetic properties of double perovskite Sr2CrReO6: Mean field approximation and Monte Carlo simulation. Physica A: Statistical Mechanics its Applications, 397 31-39.
  • El Rhazouani O, Zarhri Z, Benyoussef A, El Kenz A, 2016. Magnetic properties of the fully spin-polarized Sr2CrOsO6 double perovskite: A Monte Carlo simulation. Physics Letters A, 380 (13): 1241-1246.
  • El Yadari M, Bahmad L, El Kenz A, Benyoussef A, 2013. Monte Carlo study of the double perovskite nano Sr2VMoO6. Journal of Alloys Compounds, 579 86-91.
  • Estrada F, Guzmán E, Navarro O, Avignon M, 2018. Curie temperature behavior in half-metallic ferromagnetic double perovskites within the electronic correlation picture. Physical Review B, 97 (19): 195155.
  • Ihringer J, Maichle J, Prandl W, Hewat A, Wroblewski T, 1991. Crystal structure of the ceramic superconductor BaPb 0.75 Bi 0.25 O 3. Zeitschrift für Physik B Condensed Matter, 82 (2): 171-176.
  • Kaneyoshi T, 1993. Differential operator technique in the Ising spin systems. Acta Physica Polonica Series A, 83 703-703.
  • Kantar E, 2017. Superconductivity-like phenomena in an ferrimagnetic endohedral fullerene with diluted magnetic surface. Solid State Communications, 263 31-37. doi:https://doi.org/10.1016/j.ssc.2017.07.006
  • Keskin M, Canko O, Polat Y, 2008. Dynamic Phase Transitions in the Kinetic Mixed Spin-1/2 and Spin-1 Ising Ferrimagnetic System under a Time-Dependent Magnetic Field. Journal of Korean Physical Society, 53 497. doi:10.3938/jkps.53.497
  • Keskin M, Polat Y, 2009. Phase diagrams of a nonequilibrium mixed spin-3/2 and spin-2 Ising system in an oscillating magnetic field. Journal of Magnetism and Magnetic Materials, 321 3905-3912. doi:10.1016/j.jmmm.2009.07.052
  • Keskin M, Şarlı N, 2018. Superconducting Phase Diagram of the Yttrium, Barium, and YBa-core in YBa2Cu3O7–δ by an Ising Model. Journal of Experimental Theoretical Physics, 127 (3): 516-524. doi:10.1134/s1063776118090157
  • Kim HS, Im SH, Park NG, 2014. Organolead Halide Perovskite: New Horizons in Solar Cell Research. The Journal of Physical Chemistry C, 118 (11): 5615-5625. doi:10.1021/jp409025w
  • Labrim H, Jabar A, Belhaj A, Ziti S, Bahmad L, Laânab L, Benyoussef A, 2015. Magnetic proprieties of La2FeCoO6 double perovskite: Monte Carlo study. Journal of Alloys Compounds, 641 37-42.
  • Lamrani AF, Ouchri M, Benyoussef A, Belaiche M, Loulidi M, 2013. Half-metallic antiferromagnetic behavior of double perovskite Sr2OsMoO6: First principle calculations. Journal of Magnetism Magnetic Materials, 345 195-200.
  • Lang L, Yang JH, Liu HR, Xiang H, Gong X, 2014a. First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Physics Letters A, 378 (3): 290-293.
  • Lang L, Yang JH, Liu HR, Xiang HJ, Gong XG, 2014b. First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Physics Letters A, 378 (3): 290-293. doi:10.1016/j.physleta.2013.11.018
  • Luo S, Daoud WA, 2015. Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 3 (17): 8992-9010. doi:10.1039/c4ta04953e
  • Masrour R, Jabar A, Benyoussef A, Hamedoun M, Hlil E, 2016. Monte Carlo simulation study of magnetocaloric effect in NdMnO3 perovskite. Journal of Magnetism Magnetic Materials, 401 91-95.
  • Mitchell R. (2002). Perovskites: Modern and Ancient Almaz Press Inc. In: Ontario, Canada.
  • Mitchell RH, Chakhmouradian AR, Woodward PM, 2000. Crystal chemistry of perovskite-type compounds in the tausonite-loparite series,(Sr 1− 2 x Na x La x) TiO 3. Physics Chemistry of Minerals, 27 (8): 583-589.
  • Moradi Z, Fallah H, Hajimahmoodzadeh M, 2018. Nanocomposite perovskite based optical sensor with broadband absorption spectrum. Sensors Actuators A: Physical, 280 47-51.
  • Ngantso GD, Benyoussef A, El Kenz A, 2016. Monte Carlo study of magnetic properties and critical behavior of Sr2CrMoO6. Current Applied Physics, 16 (2): 211-219.
  • Padilha IT, de Sousa JR, Neto MA, Salmon OR, Viana J, 2013. Thermodynamics properties of copper-oxide superconductors described by an Ising frustrated model. Physica A: Statistical Mechanics its Applications, 392 (20): 4897-4904.
  • Pandu R, 2014. CrFe2O4–BiFeO3 Perovskite Multiferroic Nanocomposites–A Review. Material Science Research India, 11 (2): 128-145.
  • Sampathkumar T, Srinivasan S, Nagarajan T, Balachandran U, 1994. Properties of YBa2Cu3O7− δ-BaBiO3 composite superconductors. Applied Superconductivity, 2 (1): 29-34.
  • Sanyal P, Majumdar P, 2009. Magnetic model for the ordered double perovskites. Physical Review B, 80 (5): 054411.
  • Slassi A, 2017. Low field magnetocaloric effect in the double perovskite Sr2CrMoO6: Monte Carlo simulation. Computational Condensed Matter, 11 55-59.
  • Şarlı N, 2015. Superconductor core effect of the body centered orthorhombic nanolattice structure. Journal of Superconductivity Novel Magnetism, 28 (8): 2355-2363.
  • Şarlı N, Akbudak S, Polat Y, Ellialtioglu R, 2015. Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence. Physica A: Statistical Mechanics and its Applications, 434. doi:10.1016/j.physa.2015.04.002
  • Şarlı N, Keskin M, 2019a. Coexistence of ferromagnetism and superconductivity in NiBi-binary alloy. Chinese Journal of Physics, 60 502-509. doi:https://doi.org/10.1016/j.cjph.2019.05.029
  • Şarlı N, Keskin M, 2019b. Effects of the Copper and Oxygen atoms of the CuO-plane on magnetic properties of the YBCO by using the effective-field theory. Chinese Journal of Physics, 59 256-264. doi:https://doi.org/10.1016/j.cjph.2019.03.007
  • Tolman KR, 2016. Empirical Models for Structural Effects of A-Site Point Defects and Ordering in Perovskites.
  • Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A, 2000. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid state ionics, 138 (1-2): 79-90.
  • Weber M, Bass M, DeMars G, 1971. Laser action and spectroscopic properties of Er3+ in YAlO3. Journal of Applied Physics, 42 (1): 301-305.
  • Yu Z, 2016. Effective-mass model and magneto-optical properties in hybrid perovskites. Scientific Reports, 6 28576.
  • Zhandun V, Zinenko V, 2016. The effect of structural ordering on the magnetic, electronic, and optical properties of the LaPbMnSbO6 double perovskite. Journal of Alloys Compounds, 671 184-191.
  • Zhu XH, Xiao XB, Chen XR, Liu BG, 2017. Electronic structure, magnetism and optical properties of orthorhombic GdFeO 3 from first principles. RSC Advances, 7 (7): 4054-4061.
There are 45 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Serkan Güldal 0000-0002-4247-0786

Project Number FEFMAP/2018-0003
Publication Date March 1, 2020
Submission Date July 15, 2019
Acceptance Date November 7, 2019
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Güldal, S. (2020). Superconducting magnetic hysteresis behaviors in ABO3-type Perovskites. Journal of the Institute of Science and Technology, 10(1), 171-178. https://doi.org/10.21597/jist.592160
AMA Güldal S. Superconducting magnetic hysteresis behaviors in ABO3-type Perovskites. J. Inst. Sci. and Tech. March 2020;10(1):171-178. doi:10.21597/jist.592160
Chicago Güldal, Serkan. “Superconducting Magnetic Hysteresis Behaviors in ABO3-Type Perovskites”. Journal of the Institute of Science and Technology 10, no. 1 (March 2020): 171-78. https://doi.org/10.21597/jist.592160.
EndNote Güldal S (March 1, 2020) Superconducting magnetic hysteresis behaviors in ABO3-type Perovskites. Journal of the Institute of Science and Technology 10 1 171–178.
IEEE S. Güldal, “Superconducting magnetic hysteresis behaviors in ABO3-type Perovskites”, J. Inst. Sci. and Tech., vol. 10, no. 1, pp. 171–178, 2020, doi: 10.21597/jist.592160.
ISNAD Güldal, Serkan. “Superconducting Magnetic Hysteresis Behaviors in ABO3-Type Perovskites”. Journal of the Institute of Science and Technology 10/1 (March 2020), 171-178. https://doi.org/10.21597/jist.592160.
JAMA Güldal S. Superconducting magnetic hysteresis behaviors in ABO3-type Perovskites. J. Inst. Sci. and Tech. 2020;10:171–178.
MLA Güldal, Serkan. “Superconducting Magnetic Hysteresis Behaviors in ABO3-Type Perovskites”. Journal of the Institute of Science and Technology, vol. 10, no. 1, 2020, pp. 171-8, doi:10.21597/jist.592160.
Vancouver Güldal S. Superconducting magnetic hysteresis behaviors in ABO3-type Perovskites. J. Inst. Sci. and Tech. 2020;10(1):171-8.