Research Article
BibTex RIS Cite

Farklı Bakteri Uygulamalarının Domates (Solanum lycopersicum L.) Bitki Gelişimi Üzerine Etkileri

Year 2020, Volume: 10 Issue: 3, 1507 - 1517, 01.09.2020
https://doi.org/10.21597/jist.655657

Abstract

Bu çalışma, 2015 yılında Iğdır ili volkanik, kumlu ve tuzlu topraklarından elde edilen 25 PGPR straininin domates (Solanum lycopersicum L.) bitkisinin gelişimine etkisini değerlendirmek amacıyla yürütülmüştür. İzole edilen bakterilerin tanısı Mikrobiyal Tanılama Sistemi (MIS) kullanılarak gerçekleştirilmiştir. Azot fikse etme ve fosfat çözme özellikleri belirlenen strainlerin domates gelişimine etkisi gübre ve kontrol uygulamaları ile kıyaslanmış, ortalama ana kök uzunluğu, ortalama yan kök uzunluğu, bitki yüksekliği, gövde çapı ve dal sayısı parametreleri incelenmiştir. Çalışmanın sonucunda; Bacillus atrophaeus, Bacillus gordonae, Bacillus licheniformis, Bacillus megaterium, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis kurstakii, Bacillus viscosus, Brevibacillus centrosporus, Brevibacillus choshinensis, Chryseomonas luteola, Microbacterium lacticum, Micrococcus luteus, Micrococcus lylaei, Pseudomonas balearica, Pseudomonas pseudoalcaligenes, Pseudomonas putida, Sphingobacterium faecium, Sphingomonas paucimobilis, Staphylococcus cohnii cohnii, Staphylococcus gallinarum ve Virgibacillus pantothenticus olmak üzere 14 tür tanılanmıştır. Bakteri uygulamalarının ele alınan parametreleri gübre ve hiç uygulama yapılmayan kontrol bitkilere kıyasla önemli düzeyde arttırdığı ve en yüksek etkinin Bacillus spp. türlerinde olduğu tespit edilmiştir.

References

  • Abdel-Monaim MF, Abdel-Gaid MA, El-Morsy MEMA, 2012. Efficacy of rhizobacteria and humic acid for controlling Fusarium wilt disease and improvement of plant growth, quantitative and qualitative parameters in tomato. International Journal of Phytopathology, 1(1), 39-48.
  • Ahirwar NK, Gupta G, Singh V, Rawlley RK, Ramana S, 2015. Influence on growth and fruit yield of tomato (Lycopersicon esculentum Mill.) plants by inoculation with Pseudomonas fluorescence (SS5): Possible role of plant growth promotion. Int. J. Curr. Microbiol. Appl. Sci, 4(2), 720-730.
  • Anonim, 2018. TÜİK-Türkiye İstatistik Kurumu. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Erişim Tarihi: 15.08.2019).
  • Almaghrabi OA, Massoud SI, Abdelmoneim TS, 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi journal of biological sciences, 20(1), 57-61.
  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque A, Islam MZ, Shahidullah SM, Meon S, 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology, 8(7).
  • Burdman S, Jurkevitch E, Okon Y, 2000. Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. Microbial interactions in agriculture and forestry (Volume II), 229-250.
  • De Freitas JR, Banerjee MR, Germida JJ, 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L). Biol Fertil Soils, 24, 358-364.
  • Düzgüneş O, Kesici T, Kavuncu O, Gürbüz, F, 1987. Araştırma ve deneme metodları (İstatistik Metodları-II), Ankara Üniversitesi Ziraat Fakültesi Yayınları, 1021, 295.
  • Garcia JAL, Probanza A, Ramos B, Palomino M, Mañero FJG, 2004. Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie, 24, 169–176.
  • Glick BR, Cheng Z, Czarny J, Duan J, 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. In New perspectives and approaches in plant growth-promoting Rhizobacteria research. Springer, 329-339.
  • Gholami A, Shahsavani S, Nezarat S, 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci, 1(1), 35-40.
  • Keskin G, Gül U, 2004. Domates. Tarımsal Ekonomi Araştırma Enstitüsü Bakış Dergisi, Say: 5.
  • Kloepper, J.W. (1993). Plant growth-promoting rhizobacteria as biological control agents, Applications in Agricultural and Environmental Management. F. B. Metting, Jr., ed. Marcel Dekker Inc., New York, USA. Soil Microbial Ecology, 255-274.
  • Kundan R, Pant G, Jadon N, Agrawal PK, 2015. Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic, 6(2), 9.
  • Kumar A, Maurya BR, Raghuwanshi R, 2014. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatalysis and Agricultural Biotechnology, 3(4), 121-128.
  • Maina CC, Shivaprakash MK, Devı TS, 2013. Establishment of Tomato Seedlings Raised in the Substrate Enriched Consortia of Biocontrol Agents and PGPRs. Editorial Commıttee, 47(1), 6-10.
  • Mena-Violante HG, Olalde-Portugal V, 2007. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae, 113(1), 103-106.
  • McMillan S, 2007. Promoting growth with PGPR. The Canadian Organic Grower. Soil Foodweb Canada Ltd. Soil Biology Lab. & Learning Centre, 3-34.
  • Midmore DJ, 1993. Agronomic modification of resource use and intercrop productivity. Field Crops Research, 34(3-4), 357-380.
  • Moustaine M, Elkahkahi R, Benbouazza A, Benkirane R, Achbani EH, 2017. Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L.) and characterization for direct PGP abilities in Morocco. International Journal of Environment, Agriculture and Biotechnology, 2(2).
  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J, 2008. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant signaling & behavior, 3(4), 263-265.
  • Paisley R, 1995. MIS whole cell fatty acid analysis by gas chromatography. MIDI, Inc., Newark, DE, 5.
  • Podile AR, Kishore GK, 2006. Plant-associated bacteria. In: Gnanamanickam SS (ed) Plant growth promoting rhizobacteria. Springer, Amsterdam, pp 195-230.
  • Sharma MVRK, Saharan K, Prakash A, 2009. Application of fluorescent pseudomonads inoculant formulation on Vigna mungo through field trials. Int J Bio Life Sci, 1, 1-4.
  • Vaikuntapu PR, Dutta S, Samudrala RB, Rao VR, Kalam S, Podile AR, 2014. Preferential promotion of Lycopersicon esculentum (Tomato) growth by plant growth promoting bacteria associated with tomato. Indian Journal of Microbiology, 54(4), 403-412.
  • Vessey JK, 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255, 571-586.
  • Verhagen BW, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CM, 2004. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 17(8), 895-908.
  • Walia A., Mehta P, Chauhan A, Shirkot CK, 2014. Effect of Bacillus subtilis strain CKT1 as inoculum on growth of tomato seedlings under net house conditions. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(1), 145-155.
  • Widnyana IK, 2018. PGPR (Plant Growth Promoting Rizobacteria) Benefits in Spurring Germination, Growth and Increase the Yield of Tomato Plants. In Recent Advances in Tomato Breeding and Production, IntechOpen, 17-25.
  • Zeller SL, Brandl H, Schmid B, 2007. Host-plant selectivity of rhizobacteria in a crop/weed model system. PLoS One, 2(9), 846.

Effects of Different Bacteria Applications on Tomato (Solanum lycopersicum L.) Plant Growth

Year 2020, Volume: 10 Issue: 3, 1507 - 1517, 01.09.2020
https://doi.org/10.21597/jist.655657

Abstract

This study was conducted to determine the effects of the 25 PGPR strains, which were isolated from the salty, sandy and volcanic soils in Iğdır province, together with fertilizers and control applications on tomato seedlings in the year 2015. Tested bacteria were identified on the basis of the fatty acid types and their percentages of the strains using Microbial Identification System (MIS) computer software program. The effects of the bacterial strains, whose nitrogen fixation and phosphate solubilization properties were determined, on the growth of tomato seedlings were examined by comparing with fertilizers and control applications. Plant yield components i.e. the average length of main root, average length of lateral roots, plant height, stem diameter, leaves numbers were examined. Bacteria isolated as a result of the study; they were identified as Bacillus atrophaeus, Bacillus gordonae, Bacillus licheniformis, Bacillus megaterium, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis kurstaki, Bacillus viscosus, Brevibacillus centrosporus, Brevibacillus choshinensis, Chryseomonas luteola, Microbacterium lacticum , Micrococcus luteus, Micrococcus lylaei, Pseudomonas balearica, Pseudomonas pseudoalcaligenes, Pseudomonas putida, Sphingobacterium faecium, Sphingomonas paucimobilis, Staphylococcus cohnii cohnii, Staphylococcus gallinarum, Virgibacillus pantothenticus. It has been determined that bacteria applications significantly increase the examined parameters compared to fertilizer and control plants and the highest effect was in Bacillus spp.

References

  • Abdel-Monaim MF, Abdel-Gaid MA, El-Morsy MEMA, 2012. Efficacy of rhizobacteria and humic acid for controlling Fusarium wilt disease and improvement of plant growth, quantitative and qualitative parameters in tomato. International Journal of Phytopathology, 1(1), 39-48.
  • Ahirwar NK, Gupta G, Singh V, Rawlley RK, Ramana S, 2015. Influence on growth and fruit yield of tomato (Lycopersicon esculentum Mill.) plants by inoculation with Pseudomonas fluorescence (SS5): Possible role of plant growth promotion. Int. J. Curr. Microbiol. Appl. Sci, 4(2), 720-730.
  • Anonim, 2018. TÜİK-Türkiye İstatistik Kurumu. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Erişim Tarihi: 15.08.2019).
  • Almaghrabi OA, Massoud SI, Abdelmoneim TS, 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi journal of biological sciences, 20(1), 57-61.
  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque A, Islam MZ, Shahidullah SM, Meon S, 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology, 8(7).
  • Burdman S, Jurkevitch E, Okon Y, 2000. Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. Microbial interactions in agriculture and forestry (Volume II), 229-250.
  • De Freitas JR, Banerjee MR, Germida JJ, 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L). Biol Fertil Soils, 24, 358-364.
  • Düzgüneş O, Kesici T, Kavuncu O, Gürbüz, F, 1987. Araştırma ve deneme metodları (İstatistik Metodları-II), Ankara Üniversitesi Ziraat Fakültesi Yayınları, 1021, 295.
  • Garcia JAL, Probanza A, Ramos B, Palomino M, Mañero FJG, 2004. Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie, 24, 169–176.
  • Glick BR, Cheng Z, Czarny J, Duan J, 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. In New perspectives and approaches in plant growth-promoting Rhizobacteria research. Springer, 329-339.
  • Gholami A, Shahsavani S, Nezarat S, 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci, 1(1), 35-40.
  • Keskin G, Gül U, 2004. Domates. Tarımsal Ekonomi Araştırma Enstitüsü Bakış Dergisi, Say: 5.
  • Kloepper, J.W. (1993). Plant growth-promoting rhizobacteria as biological control agents, Applications in Agricultural and Environmental Management. F. B. Metting, Jr., ed. Marcel Dekker Inc., New York, USA. Soil Microbial Ecology, 255-274.
  • Kundan R, Pant G, Jadon N, Agrawal PK, 2015. Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic, 6(2), 9.
  • Kumar A, Maurya BR, Raghuwanshi R, 2014. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatalysis and Agricultural Biotechnology, 3(4), 121-128.
  • Maina CC, Shivaprakash MK, Devı TS, 2013. Establishment of Tomato Seedlings Raised in the Substrate Enriched Consortia of Biocontrol Agents and PGPRs. Editorial Commıttee, 47(1), 6-10.
  • Mena-Violante HG, Olalde-Portugal V, 2007. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae, 113(1), 103-106.
  • McMillan S, 2007. Promoting growth with PGPR. The Canadian Organic Grower. Soil Foodweb Canada Ltd. Soil Biology Lab. & Learning Centre, 3-34.
  • Midmore DJ, 1993. Agronomic modification of resource use and intercrop productivity. Field Crops Research, 34(3-4), 357-380.
  • Moustaine M, Elkahkahi R, Benbouazza A, Benkirane R, Achbani EH, 2017. Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L.) and characterization for direct PGP abilities in Morocco. International Journal of Environment, Agriculture and Biotechnology, 2(2).
  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J, 2008. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant signaling & behavior, 3(4), 263-265.
  • Paisley R, 1995. MIS whole cell fatty acid analysis by gas chromatography. MIDI, Inc., Newark, DE, 5.
  • Podile AR, Kishore GK, 2006. Plant-associated bacteria. In: Gnanamanickam SS (ed) Plant growth promoting rhizobacteria. Springer, Amsterdam, pp 195-230.
  • Sharma MVRK, Saharan K, Prakash A, 2009. Application of fluorescent pseudomonads inoculant formulation on Vigna mungo through field trials. Int J Bio Life Sci, 1, 1-4.
  • Vaikuntapu PR, Dutta S, Samudrala RB, Rao VR, Kalam S, Podile AR, 2014. Preferential promotion of Lycopersicon esculentum (Tomato) growth by plant growth promoting bacteria associated with tomato. Indian Journal of Microbiology, 54(4), 403-412.
  • Vessey JK, 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255, 571-586.
  • Verhagen BW, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CM, 2004. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 17(8), 895-908.
  • Walia A., Mehta P, Chauhan A, Shirkot CK, 2014. Effect of Bacillus subtilis strain CKT1 as inoculum on growth of tomato seedlings under net house conditions. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(1), 145-155.
  • Widnyana IK, 2018. PGPR (Plant Growth Promoting Rizobacteria) Benefits in Spurring Germination, Growth and Increase the Yield of Tomato Plants. In Recent Advances in Tomato Breeding and Production, IntechOpen, 17-25.
  • Zeller SL, Brandl H, Schmid B, 2007. Host-plant selectivity of rhizobacteria in a crop/weed model system. PLoS One, 2(9), 846.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Bitki Koruma / Plant Protection
Authors

Badel Uysal Şahin 0000-0003-4061-769X

Mesude Figen Dönmez 0000-0002-7992-8252

Publication Date September 1, 2020
Submission Date December 5, 2019
Acceptance Date April 17, 2020
Published in Issue Year 2020 Volume: 10 Issue: 3

Cite

APA Uysal Şahin, B., & Dönmez, M. F. (2020). Farklı Bakteri Uygulamalarının Domates (Solanum lycopersicum L.) Bitki Gelişimi Üzerine Etkileri. Journal of the Institute of Science and Technology, 10(3), 1507-1517. https://doi.org/10.21597/jist.655657
AMA Uysal Şahin B, Dönmez MF. Farklı Bakteri Uygulamalarının Domates (Solanum lycopersicum L.) Bitki Gelişimi Üzerine Etkileri. J. Inst. Sci. and Tech. September 2020;10(3):1507-1517. doi:10.21597/jist.655657
Chicago Uysal Şahin, Badel, and Mesude Figen Dönmez. “Farklı Bakteri Uygulamalarının Domates (Solanum Lycopersicum L.) Bitki Gelişimi Üzerine Etkileri”. Journal of the Institute of Science and Technology 10, no. 3 (September 2020): 1507-17. https://doi.org/10.21597/jist.655657.
EndNote Uysal Şahin B, Dönmez MF (September 1, 2020) Farklı Bakteri Uygulamalarının Domates (Solanum lycopersicum L.) Bitki Gelişimi Üzerine Etkileri. Journal of the Institute of Science and Technology 10 3 1507–1517.
IEEE B. Uysal Şahin and M. F. Dönmez, “Farklı Bakteri Uygulamalarının Domates (Solanum lycopersicum L.) Bitki Gelişimi Üzerine Etkileri”, J. Inst. Sci. and Tech., vol. 10, no. 3, pp. 1507–1517, 2020, doi: 10.21597/jist.655657.
ISNAD Uysal Şahin, Badel - Dönmez, Mesude Figen. “Farklı Bakteri Uygulamalarının Domates (Solanum Lycopersicum L.) Bitki Gelişimi Üzerine Etkileri”. Journal of the Institute of Science and Technology 10/3 (September 2020), 1507-1517. https://doi.org/10.21597/jist.655657.
JAMA Uysal Şahin B, Dönmez MF. Farklı Bakteri Uygulamalarının Domates (Solanum lycopersicum L.) Bitki Gelişimi Üzerine Etkileri. J. Inst. Sci. and Tech. 2020;10:1507–1517.
MLA Uysal Şahin, Badel and Mesude Figen Dönmez. “Farklı Bakteri Uygulamalarının Domates (Solanum Lycopersicum L.) Bitki Gelişimi Üzerine Etkileri”. Journal of the Institute of Science and Technology, vol. 10, no. 3, 2020, pp. 1507-1, doi:10.21597/jist.655657.
Vancouver Uysal Şahin B, Dönmez MF. Farklı Bakteri Uygulamalarının Domates (Solanum lycopersicum L.) Bitki Gelişimi Üzerine Etkileri. J. Inst. Sci. and Tech. 2020;10(3):1507-1.