Research Article
BibTex RIS Cite

Two Dimensional Modeling of Au/n-GaN Schottky Device

Year 2020, Volume: 10 Issue: 3, 1674 - 1682, 01.09.2020
https://doi.org/10.21597/jist.691099

Abstract

The current-voltage characteristics are powerfully affected by the lateral inhomogeneity. We developed two dimensional (2D) simulation model for Au/n-GaN Schottky device. In previous studies, it is assumed that zero barrier height inhomogeneity of the device generally good agreement with the Gaussian distribution. In this study, it is accepted that the zero barrier height inhomogeneity is randomly distributed. The structure of the modeling device has columnar grains and gaps between the grains. Structure is divided microcells and every microcell is thought of as a single diode. Whole microcells are connected in parallel. The surface area of the microcells was assumed to be square and circle. In this study, the effect of zero barrier height inhomogeneity and the surface areas of the microcells on the current-voltage characteristics and interface state density are investigated.

References

  • Abass A, Van Gestel D, Van Wichelen K, Maes B, Burgelman M, 2013. On the diffusion lenght and grain size homogeneity requirements for efficient thin-film polycrystalline silicon solar cells. Journal of Physics D: Applied Physics, 46: 045105-045115.
  • Afandiyeva IM, Dökme I, Altındal Ş, Abdullayeva LK, Askerov SG, 2008. The frequency and voltage dependent electrical characteristics of Al-TiW-Pd2Si/n-Si structure using I-V, C-V and G/w-V measurements. Microelectron Eng., 85: 365–370.
  • Altındal Ş, Karadeniz S, Tuğluoğlu N, Tataroğlu A, 2003. The role of interface states and series resistance on the I–V and C–Vcharacteristics in Al/SnO2/p-Si Schottky diodes. Solid-State Electronics, 47: 1847-1854.
  • Badalia Y, Altındal Ş, Uslu İ, 2018. Dielectric properties, electrical modulus and current transport mechanisms of Au/ZnO/n-Si structures. Progress in Natural Science: Materials International, 28: 325-331.
  • Bai Z, Du J, Xin Q, Li R, Yu Q, 2018. Numerical analysis of the reverse blocking enhancement in High-K passivation AlGaN/GaN Schottky barrier diodes with gated edge termination. Superlattices and Microstructures, 114: 143-153.
  • Boudaoud C, Hamdoune A, Allam Z, 2020. Simulation and optimization of a tandem solar cell based on InGaN. Mathematics and Computers in Simulation, 167: 194-201.
  • Card HC, Rhoderick EH, 1971. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Appl. Phys., 4: 1589-1601.
  • Cova P, Singh A, 1990. Temperature dependence of I-V and C-V characteristics of Ni/n-CdF2 Schottky barrier type diodes. Solid-State Electron, 33: 11–19.
  • Cowley AM, Sze SM, 1965. Surface States and Barrier Height of Metal‐Semiconductor Systems. Journal of Applied Physics, 36: 3212–3220.
  • Das SN, Pal AK, 2007. Schottky diodes based on nanocrystalline p-GaN and n-GaN in thin film form. Vacuum, 81: 843–850.
  • Dobos L, Pecz B, Toth L, Horvath Zs J, Horvath ZE, Toth A, Horvath E, Beaumont B, Bougrioua Z, 2006. Metal contacts to n-GaN. Applied Surface Science, 253: 655-661.
  • Ferhati H, Djeffal F, Drissi LB, 2020. A new approach to the modeling and simulation of multi-junction solar cells. Optik, 200: 163452.
  • Garcia F, Shamsir S, Islam SK, 2019. A compact model and TCAD simulation for GaN-gate injection transistor (GIT). Solid-State Electronics, 151: 52-59.
  • Grabitz PO, Rau U, Werner JH, 2005. Modeling of spatially inhomogeneous solar cells by a multi-diode approach. Phys. Stat. Sol. (a), 202: 2920-2927.
  • Huang R, Yu M, Yang Q, Zhang L, Wu Y, Cheng Q, 2020. Numerical simulation for optimization of an ultra-thin n-type WS2/p-type c-Si heterojunction solar cells. Computational Materials Science, 178: 109600.
  • Kadaoui MA, Bouiadjra WB, Saidane A, Belahsene S, Ramdane A, 2015. Electrical parameters of Au/n-GaN and Pt/n-GaN Schottky diodes. Superlattices and Microstructures, 82: 269-286.
  • Karrer U, Dobner A, Ambacher O, Stutzmann M, 1999. Characterization of AlGaN-Schottky Diodes Grown by Plasma Induced Molecular Beam Epitaxy. Phys. Stat. Sol. (a), 176: 163-167.
  • Kavasoğlu N, Kavasoğlu AS, Metin B, 2016. A New Simulation Model for Inhomogeneous Au/n-GaN Structure. Semiconductors, 50(5): 616–620.
  • Koishiyev GT, Sites JR, 2009. Effect of Shunts on Thin-Film CdTe Module Performance. Mater. Res. Soc. Symp. Proc., 1165.
  • Malm U, Edoff M, 2009. 2D device modelling and finite element simulations for thin-film solar cells. Solar Energy Materials & Solar Cells, 93: 1066-1069.
  • Miettunen K, Halme J, Visuri AM, Lund P, 2011. Two- Dimensional Time-Dependent Numerical Modeling of Edge Effects in Dye Solar Cells. The Journal of Physical Chemistry C, 115: 7019–7031.
  • Mou W, Zhao L, Chen L, Yan D, Ma H, Yang G, Gu X, 2017. GaN-based Schottky barrier ultraviolet photodedectors with graded doping on patterned sapphire substrates. Solid-State Electronics, 133: 78-82.
  • Özdemir S, Altındal Ş, 1994. Temperature Dependent Electrical Characteristics of Al-SiOx-pSi Solar Cells. Sol. Energ. Mat. Sol. C , 32: 115-127.
  • Peartona SJ, Ren F, Zhang AP, Lee KP, 2000. Fabrication and performance of GaN electronic devices. Materials Science and Engineering, R30: 55-212.
  • Sowmya K , Balamurugan NB, Parvathy V, 2019. A 2-D Modeling of Fe doped Dual Material Gate AlGaN/AlN/GaN High Electron Mobility Transistors for High Frequency Applications. AEU - International Journal of Electronics and Communications, 103: 46-56.
  • Tataroğlu A, Altındal Ş, 2009. The distribution of barrier heights in MIS type Schottky diodes from current–voltage–temperature (I–V–T) measurements. Journal of Alloys and Compounds, 479 (1-2): 893-897.
  • Touzi C, Rebey A, Eljani B, 2002. Influence of metal properties and photodiode parameters on the spectral response of n-GaN Schottky photodiode. Microelectronics Journal, 33: 961–965.
  • Yu M, Li Y, Cheng Q, Li S, 2019. Numerical simulation of graphene/GaAs heterojunction solar cells. Solar Energy, 182: 453-461.
  • Zhu S, Detavernier C, Van Meirhaeghe RL, Cardon F, Ru G, Qu X, Li B, 2000. Electrical characteristics of CoSi2 /n-Si (100) Schottky barrier contacts formed by solid state reaction. Solid-State Electronics, 44: 1807-1818.

Au/n-GaN Schottky Aygıtının İki Boyutlu Modellenmesi

Year 2020, Volume: 10 Issue: 3, 1674 - 1682, 01.09.2020
https://doi.org/10.21597/jist.691099

Abstract

Akım-voltaj karakteristikleri yanal homojensizliklerden güçlü bir şekilde etkilenir. Au/n-GaN Schottky aygıtı için iki boyutlu (2B) simülasyon modeli geliştirdik. Önceki çalışmalarda aygıtın sıfır voltluk gerilim altındaki engel yüksekliğindeki homojensizliğinin genellikle Gaussian dağılıma uyduğu varsayılmaktadır. Bu çalışmada, sıfır voltluk gerilim altındaki engel yüksekliğindeki homojensizliğin rastgele dağıldığı kabul edilmiştir. Modellenen aygıt yapısı sütunsu grainlere ve grainler arasında boşluklara sahiptir. Yapı mikro hücrelere ayrılmıştır ve her mikro hücre tek bir diyot olarak düşünülmüştür. Tüm mikro hücreler birbirlerine paralel bağlanmıştır. Mikro hücrelerin yüzey alanlarının kare ve daire olduğu varsayılmıştır. Bu çalışmada, mikro hücrelerin sıfır voltluk gerilim altındaki engel yüksekliğindeki homojensizliğinin ve yüzey alanlarının akım-voltaj karakteristikleri ve arayüzey durum yoğunluğuna etkileri incelenmiştir.

References

  • Abass A, Van Gestel D, Van Wichelen K, Maes B, Burgelman M, 2013. On the diffusion lenght and grain size homogeneity requirements for efficient thin-film polycrystalline silicon solar cells. Journal of Physics D: Applied Physics, 46: 045105-045115.
  • Afandiyeva IM, Dökme I, Altındal Ş, Abdullayeva LK, Askerov SG, 2008. The frequency and voltage dependent electrical characteristics of Al-TiW-Pd2Si/n-Si structure using I-V, C-V and G/w-V measurements. Microelectron Eng., 85: 365–370.
  • Altındal Ş, Karadeniz S, Tuğluoğlu N, Tataroğlu A, 2003. The role of interface states and series resistance on the I–V and C–Vcharacteristics in Al/SnO2/p-Si Schottky diodes. Solid-State Electronics, 47: 1847-1854.
  • Badalia Y, Altındal Ş, Uslu İ, 2018. Dielectric properties, electrical modulus and current transport mechanisms of Au/ZnO/n-Si structures. Progress in Natural Science: Materials International, 28: 325-331.
  • Bai Z, Du J, Xin Q, Li R, Yu Q, 2018. Numerical analysis of the reverse blocking enhancement in High-K passivation AlGaN/GaN Schottky barrier diodes with gated edge termination. Superlattices and Microstructures, 114: 143-153.
  • Boudaoud C, Hamdoune A, Allam Z, 2020. Simulation and optimization of a tandem solar cell based on InGaN. Mathematics and Computers in Simulation, 167: 194-201.
  • Card HC, Rhoderick EH, 1971. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Appl. Phys., 4: 1589-1601.
  • Cova P, Singh A, 1990. Temperature dependence of I-V and C-V characteristics of Ni/n-CdF2 Schottky barrier type diodes. Solid-State Electron, 33: 11–19.
  • Cowley AM, Sze SM, 1965. Surface States and Barrier Height of Metal‐Semiconductor Systems. Journal of Applied Physics, 36: 3212–3220.
  • Das SN, Pal AK, 2007. Schottky diodes based on nanocrystalline p-GaN and n-GaN in thin film form. Vacuum, 81: 843–850.
  • Dobos L, Pecz B, Toth L, Horvath Zs J, Horvath ZE, Toth A, Horvath E, Beaumont B, Bougrioua Z, 2006. Metal contacts to n-GaN. Applied Surface Science, 253: 655-661.
  • Ferhati H, Djeffal F, Drissi LB, 2020. A new approach to the modeling and simulation of multi-junction solar cells. Optik, 200: 163452.
  • Garcia F, Shamsir S, Islam SK, 2019. A compact model and TCAD simulation for GaN-gate injection transistor (GIT). Solid-State Electronics, 151: 52-59.
  • Grabitz PO, Rau U, Werner JH, 2005. Modeling of spatially inhomogeneous solar cells by a multi-diode approach. Phys. Stat. Sol. (a), 202: 2920-2927.
  • Huang R, Yu M, Yang Q, Zhang L, Wu Y, Cheng Q, 2020. Numerical simulation for optimization of an ultra-thin n-type WS2/p-type c-Si heterojunction solar cells. Computational Materials Science, 178: 109600.
  • Kadaoui MA, Bouiadjra WB, Saidane A, Belahsene S, Ramdane A, 2015. Electrical parameters of Au/n-GaN and Pt/n-GaN Schottky diodes. Superlattices and Microstructures, 82: 269-286.
  • Karrer U, Dobner A, Ambacher O, Stutzmann M, 1999. Characterization of AlGaN-Schottky Diodes Grown by Plasma Induced Molecular Beam Epitaxy. Phys. Stat. Sol. (a), 176: 163-167.
  • Kavasoğlu N, Kavasoğlu AS, Metin B, 2016. A New Simulation Model for Inhomogeneous Au/n-GaN Structure. Semiconductors, 50(5): 616–620.
  • Koishiyev GT, Sites JR, 2009. Effect of Shunts on Thin-Film CdTe Module Performance. Mater. Res. Soc. Symp. Proc., 1165.
  • Malm U, Edoff M, 2009. 2D device modelling and finite element simulations for thin-film solar cells. Solar Energy Materials & Solar Cells, 93: 1066-1069.
  • Miettunen K, Halme J, Visuri AM, Lund P, 2011. Two- Dimensional Time-Dependent Numerical Modeling of Edge Effects in Dye Solar Cells. The Journal of Physical Chemistry C, 115: 7019–7031.
  • Mou W, Zhao L, Chen L, Yan D, Ma H, Yang G, Gu X, 2017. GaN-based Schottky barrier ultraviolet photodedectors with graded doping on patterned sapphire substrates. Solid-State Electronics, 133: 78-82.
  • Özdemir S, Altındal Ş, 1994. Temperature Dependent Electrical Characteristics of Al-SiOx-pSi Solar Cells. Sol. Energ. Mat. Sol. C , 32: 115-127.
  • Peartona SJ, Ren F, Zhang AP, Lee KP, 2000. Fabrication and performance of GaN electronic devices. Materials Science and Engineering, R30: 55-212.
  • Sowmya K , Balamurugan NB, Parvathy V, 2019. A 2-D Modeling of Fe doped Dual Material Gate AlGaN/AlN/GaN High Electron Mobility Transistors for High Frequency Applications. AEU - International Journal of Electronics and Communications, 103: 46-56.
  • Tataroğlu A, Altındal Ş, 2009. The distribution of barrier heights in MIS type Schottky diodes from current–voltage–temperature (I–V–T) measurements. Journal of Alloys and Compounds, 479 (1-2): 893-897.
  • Touzi C, Rebey A, Eljani B, 2002. Influence of metal properties and photodiode parameters on the spectral response of n-GaN Schottky photodiode. Microelectronics Journal, 33: 961–965.
  • Yu M, Li Y, Cheng Q, Li S, 2019. Numerical simulation of graphene/GaAs heterojunction solar cells. Solar Energy, 182: 453-461.
  • Zhu S, Detavernier C, Van Meirhaeghe RL, Cardon F, Ru G, Qu X, Li B, 2000. Electrical characteristics of CoSi2 /n-Si (100) Schottky barrier contacts formed by solid state reaction. Solid-State Electronics, 44: 1807-1818.
There are 29 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Bengül Metin 0000-0002-8432-8569

Neşe Kavasoğlu 0000-0001-7249-2700

A. Sevtap Kavasoğlu This is me 0000-0001-6758-5574

Publication Date September 1, 2020
Submission Date February 19, 2020
Acceptance Date May 12, 2020
Published in Issue Year 2020 Volume: 10 Issue: 3

Cite

APA Metin, B., Kavasoğlu, N., & Kavasoğlu, A. S. (2020). Two Dimensional Modeling of Au/n-GaN Schottky Device. Journal of the Institute of Science and Technology, 10(3), 1674-1682. https://doi.org/10.21597/jist.691099
AMA Metin B, Kavasoğlu N, Kavasoğlu AS. Two Dimensional Modeling of Au/n-GaN Schottky Device. J. Inst. Sci. and Tech. September 2020;10(3):1674-1682. doi:10.21597/jist.691099
Chicago Metin, Bengül, Neşe Kavasoğlu, and A. Sevtap Kavasoğlu. “Two Dimensional Modeling of Au/N-GaN Schottky Device”. Journal of the Institute of Science and Technology 10, no. 3 (September 2020): 1674-82. https://doi.org/10.21597/jist.691099.
EndNote Metin B, Kavasoğlu N, Kavasoğlu AS (September 1, 2020) Two Dimensional Modeling of Au/n-GaN Schottky Device. Journal of the Institute of Science and Technology 10 3 1674–1682.
IEEE B. Metin, N. Kavasoğlu, and A. S. Kavasoğlu, “Two Dimensional Modeling of Au/n-GaN Schottky Device”, J. Inst. Sci. and Tech., vol. 10, no. 3, pp. 1674–1682, 2020, doi: 10.21597/jist.691099.
ISNAD Metin, Bengül et al. “Two Dimensional Modeling of Au/N-GaN Schottky Device”. Journal of the Institute of Science and Technology 10/3 (September 2020), 1674-1682. https://doi.org/10.21597/jist.691099.
JAMA Metin B, Kavasoğlu N, Kavasoğlu AS. Two Dimensional Modeling of Au/n-GaN Schottky Device. J. Inst. Sci. and Tech. 2020;10:1674–1682.
MLA Metin, Bengül et al. “Two Dimensional Modeling of Au/N-GaN Schottky Device”. Journal of the Institute of Science and Technology, vol. 10, no. 3, 2020, pp. 1674-82, doi:10.21597/jist.691099.
Vancouver Metin B, Kavasoğlu N, Kavasoğlu AS. Two Dimensional Modeling of Au/n-GaN Schottky Device. J. Inst. Sci. and Tech. 2020;10(3):1674-82.