Research Article
BibTex RIS Cite

Horseradish Peroksidaz Nano Biyokatalizörü İle Hidrokinon’un Polimerleştirilmesi

Year 2021, Volume: 11 Issue: 1, 384 - 392, 01.03.2021
https://doi.org/10.21597/jist.743862

Abstract

Bu araştırmada, Fe2+ iyonlarının horseradish peroksidaz (HRP) enzimiyle oluşturduğu çiçek şekilli hibrit nano biyokatalizörün (HRP-Fe2+), hidrokinon’un polimerleşmesi üzerine etkisi incelenmiştir. Elde edilen sonuçlara göre; HRP-Fe2+ biyokatalizörü ve hidrojen peroksit (H2O2) başlatıcısı kullanılarak gerçekleştirilen polimerleşmeler, serbest HRP enziminin kullanıldığı koşullara kıyasla yüksek sıcaklıklarda oldukça yüksek katalitik kararlılık göstermiştir. Poly(hidrokinon), pH 7.4 tamponu içerisinde 60 oC sıcaklıkta ve ağırlıkça %5 oranında HRP-Fe2+ biyokatalizörü eklenmesiyle %44 verimle sentezlenmiştir. HRP-Fe2+ biyokatalizörü, serbest HRP enziminin denatüre olduğu 70 oC gibi yüksek sıcaklıklarda bile bozunmaya uğramadan katalitik aktivite göstermiştir. HRP-Fe2+ biyokatalizörünün ayrıca serbest HRP enzimine kıyasla az da olsa daha düşük katalitik aktivite gösterdiği gözlenmiştir. Bu iki katalizörle gerçekleştirilen polimerleşmelerde verimlerin birbirine yakın olduğu, ancak serbest HRP enzimi kullanılarak elde edilen polimerlerin HRP-Fe2+ kullanılarak elde edilen polimerlere kıyasla daha yüksek molekül ağırlığına sahip olduğu gözlenmiştir. Buradan da HRP-Fe2+ biyokatalizörünün katalitik aktivitesinin, serbest HRP enzimine kıyasla azaldığı sonucuna varılmıştır.

Supporting Institution

Hatay Mustafa Kemal Üniversitesi

Project Number

18.M.011

Thanks

Bu çalışma, Hatay Mustafa Kemal Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından “18.M.011” numaralı proje ile desteklenmiştir

References

  • Avnir D, Braun S, Lev O, Ottolenghi M, 1994. Enzymes and Other Proteins Entrapped in Sol-Gel Materials. Chemistry of Materials, 6: 1605–1614.
  • Dordick JS, Marletta MA, Klibanov AM, 1987. Polymerization of phenols catalyzed by peroxidase in nonaqueous media. Biotechnology and Bioengineering, 30 (1): 31–36.
  • Fernandez-Lafuente R, 2009. Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme and Microbial Technology, 45: 405–418.
  • Ge J, Lei J, Zare RN, 2012. Protein–inorganic hybrid nanoflowers. Nature Nanotechnology, 7: 428–432.
  • Gokturk E, Ocsoy I, Turac E, Sahmetlioglu E, 2020. Horseradish peroxidase-based hybrid nanoflowers with enhanced catalytical activities for polymerization reactions of phenol derivatives. Polymers for Advanced Technologies, 1-7. Doi: 10.1002/pat.4956
  • Goretzki C, Ritter H, 1998. Enzymatic oxidative polymerization of aminochalcones by use of horseradish peroxidase. Macromolecular Chemistry and Physics, 199 (6): 1019–1024.
  • Gross RA, Kumar A, Kalra B, 2001. Polymer synthesis by in vitro enzyme catalysis. Chemical Reviews, 101 (7): 2097–2124.
  • Isci I, Gokturk E, Turac E, Sahmetlioglu E, 2016. Chemoenzymatic polymerization of hydrazone functionalized phenol. Polymer Science Series B, 58 (4): 411–420.
  • Kim J, Park J, Kim H, 2004. Synthesis and characterization of nanoporous silica support for enzyme immobilization. Colloids and Surfaces A, 241: 113–117.
  • Kocak A, Kumbul A, Gokturk E, Sahmetlioglu E, 2016. Synthesis and characterization of imine-functionalizedpolyphenol via enzymatic oxidative polycondensation of a bisphenol derivative. Polymer Bulletin, 73 (1): 163–177.
  • Kumbul A, Gokturk E, Turac E, Sahmetlioglu E, 2015. Enzymatic oxidative polymerization of para‐imine functionalized phenol catalyzed by horseradish peroxidase. Polymers for Advanced Technologies, 26 (9): 1123–1129.
  • Kumbul A, Gokturk E, Sahmetlioglu E, 2016. Synthesis, characterization, thermal stability and electrochemical properties of ortho-imine-functionalized oligophenol via enzymatic oxidative polycondensation. Journal of Polymer Research, 23 (52).
  • Lee C, Chiang H, Li K, Ko F, Su C, Yang Y, 2009. Surface Reaction Limited Model for the Evaluation of Immobilized Enzyme on Planar Surfaces. Analytical Chemistry, 81: 2737–2744.
  • Lin Z, Xiao Y, Yin Y, Hu W, Liu W, Yang H, 2014. Facile Synthesis of Enzyme-Inorganic Hybrid Nanoflowers and Its Application as a Colorimetric Platform for Visual Detection of Hydrogen Peroxide and Phenol. ACS Applied Materials and Interfaces, 6: 10775–10782.
  • Luckarift HR, Spain JC, Naik RR, Stone MO, 2004. Enzyme immobilization in a biomimetic silica support. Nature Biotechnology, 22: 211–213.
  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R, 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40: 1451–1463.
  • Ocsoy I, Dogru E, Usta S, 2015. A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity. Enzyme and Microbial Technology, 75–76: 25–29.
  • Rana S, Yeh Y, Rotello VM, 2010. Engineering the nanoparticle–protein interface: applications and possibilities. Current Opinion in Chemical Biology, 14 (6): 828–834.
  • Sheldon RA, 2007. Enzyme Immobilization: The Quest for Optimum Performance. Advances Synthesis and Catalysis, 349: 1289–1307.
  • Somturk B, Hancer M, Ocsoy I, Ozdemir N, 2015. Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Transactions, 44: 13845–13852.
  • Tonami H, Uyama H, Kobayashi S, Rettig K, Ritter H, 1999. Chemoenzymatic synthesis of a poly(hydroquinone). Macromolecular Chemistry and Physics, 200 (9): 1998–2002.
  • Topal Y, Tapan S, Gokturk E, Sahmetlioglu E, 2017. Horseradish peroxidase-catalyzed polymerization of ortho-imino-phenol: synthesis, characterization, thermal stability and electrochemical properties. Journal of Saudi Chemical Society, 21 (6): 731–740.
  • Vietch NC, 2004. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65 (3): 249–259.
  • Wang P, 2009. Multi-scale Features in Recent Development of Enzymic Biocatalyst Systems. Applied Biochemistry and Biotechnology, 152: 343–352.
  • Wang L, Wang Y, He R, Zhuang A, Wang X, Zeng J, Hou JG, 2013. A New Nanobiocatalytic System Based on Allosteric Effect with Dramatically Enhanced Enzymatic Performance. Journal of the American Chemical Society, 135: 1272–1275.
  • Wang R, Zhang Y, Lu D, Ge J, Liu Z, Zare RN, 2013. Functional protein–organic/inorganic hybrid nanomaterials. WIREs Nanomedicine and Nanobiotechnology, 5: 320–328.
  • Wu CW, Lee JG, Lee WC, 1998. Protein and enzyme immobilization on non-porous microspheres of polystyrene. Biotechnology and Applied Biochemistry, 27: 225–230.
  • Yildirim P, Gokturk E, Turac E, Demir HO, Sahmetlioglu E, 2016. Chemoenzymatic polycondensation of para-benzylamino phenol. Chemical Papers, 70 (5): 610–619.
  • Zhu L, Gong L, Zhang Y, Wang R, Ge J, Liu Z, Zare RN, 2013. Rapid Detection of Phenol Using a Membrane Containing Laccase Nanoflowers. Chemistry- An Asian Journal, 8: 2358–2360.

Polymerization of Hydroquinone Using Horseradish Peroxidase Nanobiocatalyst

Year 2021, Volume: 11 Issue: 1, 384 - 392, 01.03.2021
https://doi.org/10.21597/jist.743862

Abstract

In this study, the effects of flower shaped hybrid nanobiocatalyst (HRP-Fe2+) containing horseradish peroxidase (HRP) enzyme and Fe2+ ions on the polymerization of hydroquinone were investigated. According to the obtained results, HRP-Fe2+ hybrid nanobiocatalyst in the presence of hydrogen peroxide (H2O2) initiator has shown enhanced catalytic stability at high reaction temperatures compared to that of free HRP enzyme. Poly(hydroquinone) was successfully synthesized with 44% of yield in pH 7.4 buffer at 60 oC reaction temperature with 5 weight % HRP-Fe2+catalyst loading. HRP-Fe2+ nanobiocatalyst also showed some degree of catalytic activity even at 70 oC reaction temperature without having denaturation, in which free HRP enzyme denatures. On the other hand, HRP-Fe2+ also showed lower catalytic activity in the polymerization of hydroquinone compared to that of the free HRP enzyme. It was observed that both polymerizations resulted in polymer product with almost the same yields, but the polymers obtained from using the free HRP enzyme had higher molecular weights in contrast with the polymers obtained from HRP-Fe2+ biocatalyst. It was concluded that the catalytic activity of the HRP-Fe2+ nanobiocatalyst slightly decreased compared to the free HRP enzyme.

Project Number

18.M.011

References

  • Avnir D, Braun S, Lev O, Ottolenghi M, 1994. Enzymes and Other Proteins Entrapped in Sol-Gel Materials. Chemistry of Materials, 6: 1605–1614.
  • Dordick JS, Marletta MA, Klibanov AM, 1987. Polymerization of phenols catalyzed by peroxidase in nonaqueous media. Biotechnology and Bioengineering, 30 (1): 31–36.
  • Fernandez-Lafuente R, 2009. Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme and Microbial Technology, 45: 405–418.
  • Ge J, Lei J, Zare RN, 2012. Protein–inorganic hybrid nanoflowers. Nature Nanotechnology, 7: 428–432.
  • Gokturk E, Ocsoy I, Turac E, Sahmetlioglu E, 2020. Horseradish peroxidase-based hybrid nanoflowers with enhanced catalytical activities for polymerization reactions of phenol derivatives. Polymers for Advanced Technologies, 1-7. Doi: 10.1002/pat.4956
  • Goretzki C, Ritter H, 1998. Enzymatic oxidative polymerization of aminochalcones by use of horseradish peroxidase. Macromolecular Chemistry and Physics, 199 (6): 1019–1024.
  • Gross RA, Kumar A, Kalra B, 2001. Polymer synthesis by in vitro enzyme catalysis. Chemical Reviews, 101 (7): 2097–2124.
  • Isci I, Gokturk E, Turac E, Sahmetlioglu E, 2016. Chemoenzymatic polymerization of hydrazone functionalized phenol. Polymer Science Series B, 58 (4): 411–420.
  • Kim J, Park J, Kim H, 2004. Synthesis and characterization of nanoporous silica support for enzyme immobilization. Colloids and Surfaces A, 241: 113–117.
  • Kocak A, Kumbul A, Gokturk E, Sahmetlioglu E, 2016. Synthesis and characterization of imine-functionalizedpolyphenol via enzymatic oxidative polycondensation of a bisphenol derivative. Polymer Bulletin, 73 (1): 163–177.
  • Kumbul A, Gokturk E, Turac E, Sahmetlioglu E, 2015. Enzymatic oxidative polymerization of para‐imine functionalized phenol catalyzed by horseradish peroxidase. Polymers for Advanced Technologies, 26 (9): 1123–1129.
  • Kumbul A, Gokturk E, Sahmetlioglu E, 2016. Synthesis, characterization, thermal stability and electrochemical properties of ortho-imine-functionalized oligophenol via enzymatic oxidative polycondensation. Journal of Polymer Research, 23 (52).
  • Lee C, Chiang H, Li K, Ko F, Su C, Yang Y, 2009. Surface Reaction Limited Model for the Evaluation of Immobilized Enzyme on Planar Surfaces. Analytical Chemistry, 81: 2737–2744.
  • Lin Z, Xiao Y, Yin Y, Hu W, Liu W, Yang H, 2014. Facile Synthesis of Enzyme-Inorganic Hybrid Nanoflowers and Its Application as a Colorimetric Platform for Visual Detection of Hydrogen Peroxide and Phenol. ACS Applied Materials and Interfaces, 6: 10775–10782.
  • Luckarift HR, Spain JC, Naik RR, Stone MO, 2004. Enzyme immobilization in a biomimetic silica support. Nature Biotechnology, 22: 211–213.
  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R, 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40: 1451–1463.
  • Ocsoy I, Dogru E, Usta S, 2015. A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity. Enzyme and Microbial Technology, 75–76: 25–29.
  • Rana S, Yeh Y, Rotello VM, 2010. Engineering the nanoparticle–protein interface: applications and possibilities. Current Opinion in Chemical Biology, 14 (6): 828–834.
  • Sheldon RA, 2007. Enzyme Immobilization: The Quest for Optimum Performance. Advances Synthesis and Catalysis, 349: 1289–1307.
  • Somturk B, Hancer M, Ocsoy I, Ozdemir N, 2015. Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Transactions, 44: 13845–13852.
  • Tonami H, Uyama H, Kobayashi S, Rettig K, Ritter H, 1999. Chemoenzymatic synthesis of a poly(hydroquinone). Macromolecular Chemistry and Physics, 200 (9): 1998–2002.
  • Topal Y, Tapan S, Gokturk E, Sahmetlioglu E, 2017. Horseradish peroxidase-catalyzed polymerization of ortho-imino-phenol: synthesis, characterization, thermal stability and electrochemical properties. Journal of Saudi Chemical Society, 21 (6): 731–740.
  • Vietch NC, 2004. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65 (3): 249–259.
  • Wang P, 2009. Multi-scale Features in Recent Development of Enzymic Biocatalyst Systems. Applied Biochemistry and Biotechnology, 152: 343–352.
  • Wang L, Wang Y, He R, Zhuang A, Wang X, Zeng J, Hou JG, 2013. A New Nanobiocatalytic System Based on Allosteric Effect with Dramatically Enhanced Enzymatic Performance. Journal of the American Chemical Society, 135: 1272–1275.
  • Wang R, Zhang Y, Lu D, Ge J, Liu Z, Zare RN, 2013. Functional protein–organic/inorganic hybrid nanomaterials. WIREs Nanomedicine and Nanobiotechnology, 5: 320–328.
  • Wu CW, Lee JG, Lee WC, 1998. Protein and enzyme immobilization on non-porous microspheres of polystyrene. Biotechnology and Applied Biochemistry, 27: 225–230.
  • Yildirim P, Gokturk E, Turac E, Demir HO, Sahmetlioglu E, 2016. Chemoenzymatic polycondensation of para-benzylamino phenol. Chemical Papers, 70 (5): 610–619.
  • Zhu L, Gong L, Zhang Y, Wang R, Ge J, Liu Z, Zare RN, 2013. Rapid Detection of Phenol Using a Membrane Containing Laccase Nanoflowers. Chemistry- An Asian Journal, 8: 2358–2360.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Ersen Göktürk 0000-0001-6742-2847

Project Number 18.M.011
Publication Date March 1, 2021
Submission Date May 28, 2020
Acceptance Date September 3, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Göktürk, E. (2021). Horseradish Peroksidaz Nano Biyokatalizörü İle Hidrokinon’un Polimerleştirilmesi. Journal of the Institute of Science and Technology, 11(1), 384-392. https://doi.org/10.21597/jist.743862
AMA Göktürk E. Horseradish Peroksidaz Nano Biyokatalizörü İle Hidrokinon’un Polimerleştirilmesi. J. Inst. Sci. and Tech. March 2021;11(1):384-392. doi:10.21597/jist.743862
Chicago Göktürk, Ersen. “Horseradish Peroksidaz Nano Biyokatalizörü İle Hidrokinon’un Polimerleştirilmesi”. Journal of the Institute of Science and Technology 11, no. 1 (March 2021): 384-92. https://doi.org/10.21597/jist.743862.
EndNote Göktürk E (March 1, 2021) Horseradish Peroksidaz Nano Biyokatalizörü İle Hidrokinon’un Polimerleştirilmesi. Journal of the Institute of Science and Technology 11 1 384–392.
IEEE E. Göktürk, “Horseradish Peroksidaz Nano Biyokatalizörü İle Hidrokinon’un Polimerleştirilmesi”, J. Inst. Sci. and Tech., vol. 11, no. 1, pp. 384–392, 2021, doi: 10.21597/jist.743862.
ISNAD Göktürk, Ersen. “Horseradish Peroksidaz Nano Biyokatalizörü İle Hidrokinon’un Polimerleştirilmesi”. Journal of the Institute of Science and Technology 11/1 (March 2021), 384-392. https://doi.org/10.21597/jist.743862.
JAMA Göktürk E. Horseradish Peroksidaz Nano Biyokatalizörü İle Hidrokinon’un Polimerleştirilmesi. J. Inst. Sci. and Tech. 2021;11:384–392.
MLA Göktürk, Ersen. “Horseradish Peroksidaz Nano Biyokatalizörü İle Hidrokinon’un Polimerleştirilmesi”. Journal of the Institute of Science and Technology, vol. 11, no. 1, 2021, pp. 384-92, doi:10.21597/jist.743862.
Vancouver Göktürk E. Horseradish Peroksidaz Nano Biyokatalizörü İle Hidrokinon’un Polimerleştirilmesi. J. Inst. Sci. and Tech. 2021;11(1):384-92.