Research Article
BibTex RIS Cite

Determination of Antioxidant and Antiradical Properties of Corn Silk (Zea mays L.)

Year 2021, Volume: 11 Issue: 1, 402 - 412, 01.03.2021
https://doi.org/10.21597/jist.748111

Abstract

In this study, antioxidant and antiradical properties of corn silk (Zea mays L.) were investigated. For this aim, it was elucidated the antioxidant and antiradical activity of water (SEZM) and ethanol (EEZM) extracts of corn silk by different in vitro antioxidant assays. Radical scavenging activities of corn silk extracts were performed by 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) radical (ABTS•+) scavenging assays. So, reducing power corn silk extracts has been evaluated by Cu2+-Cu+ reducing (CUPRAC), Fe3+-Fe2+ and [Fe3+-(TPTZ)2]3+-[Fe2+-(TPTZ)2]2+ (FRAP) reducing abilities. Both corn silk extracts have showed certain amount of antioxidant activity. α-Tocopherol ((2R)-2,5,7,8-Tetramethyl-2-[(4R,8R)-(4,8,12-trimethyltridecyl)]-6-chromanol), trolox (3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl- 2H-1-benzopyran-2-carboxylic acid), butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) have been used as positive controls. Moreover, IC50 values were calculated for DPPH•, ABTS•+ radicals scavenging effects of corn silk extracts.

References

  • Ak T, Gülçin İ, 2008.Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174: 27-37.
  • Apak R, Güçlü K, Özyürek M, Karademir SE, Erça E, 2006. The Cupric Ion Reducing Antioxidant Capacity And Polyphenolic Content Of Some Herbal Teas. International Journal of Food Science and Nutrition, 57: 292–304.
  • Blois MS, 1958. Antioxidant deteminations by the use of a stable free radical. Nature, 26: 1199-1200.
  • Bursal E, 2009. Determination of antioxidant and antiradical activities of kiwi fruit (Actinidia deliciosa), purification and characterization of carbonic anhydrase enzyme. Ataturk University Graduate School of Natural and Applied Sciences, Ph. D. Thesis (Printed).
  • Bursal E, Gülçin İ, 2011. Polyphenol contents and in vitro antioxidant activities of lyophilized aqueous extract of kiwifruit (Actinidia deliciosa). Food Research International, 44: 1482-1489.
  • Bursal E, Köksal E, Gülçin İ, Bilsel G, Gören AC, 2013. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Research International, 51: 66-74.
  • Çakmakçı S, Topdaş EF, Kalın P, Han H, Şekerci P, Köse LP, Gülçin I, 2015. Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. International Journal of Food Science and Technology, 50: 472-481.
  • Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C, 2008. Multi-target-directed ligands to combat neurodegenerative diseases. Journal of Medicinal Chemistry, 51: 347-372.
  • Chaiittianan R, Chayopas P, Rattanathongkom A, Tippayawat P, Sutthanut K, 2016. Anti-obesity potential of corn silks: relationships of phytochemicals and antioxidation, anti-pre-adipocyte proliferation, anti-adipogenesis, and lipolysis induction. Journal of Functional Foods, 23: 497–510.
  • Chang CC, Yuan W, Roan HY, Chang JL, Huang HC, Lee YC, Tsay HJ, Liu HK, 2016. The ethyl acetate fraction of corn silk exhibits dual antioxidant and anti-glycation activities and protects insulin-secreting cells from glucotoxicity. BMC Complementary and Alternative Medicine, 16: 432.
  • Choi DJ, Kim SL, Choi JW, Park YI, 2014. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells. Life Sciences, 109: 57–64.
  • Du Q, Zhao XH, Xia L, Jiang CJ, Wang XG, Han Y, Wang J, Yu HQ, 2019. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). Journal of Integrative Agriculture, 18 (2): 395-406.
  • Duh PD, 1998. Antioxidant activity of burdock (Arctium lappa L.): it's scavenging effect on free radical and active oxygen. Journal of the American Oil Chemists Society, 75: 455-461.
  • Ebrahimzadeh MA, Mahmoudi M, Ahangar N, Ehteshami S, Ansaroudi F, Nabavi SF, Nabavi SM, 2009. Antidepressant activity of corn silk. Pharmacologyonline, 3: 647–652.
  • Elmastaş M, Gülçin İ, Beydemir Ş, Küfrevioğlu Öİ, Aboul-Enein HY, 2006a. A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) seeds extracts. Analytical Letters, 39: 47-65.
  • Elmastaş M, Türkekul İ, Öztürk L, Gülçin İ, Işıldak Ö, Aboul-Enein HY, 2006b. The antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta). Combinatorial Chemistry and High Throughput Screening, 9: 443-448.
  • Göçer H, Gülçin İ, 2011. Caffeic acid phenethyl ester (CAPE): Correlation of structure and antioxidant properties. International Journal of Food Sciences and Nutrition, 62: 821-825.
  • Gurib-Fakim A, 2006. Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine, 27: 1-93.
  • Gülçin İ, 2006a. Antioxidant and antiradical activities of L-Carnitine. Life Sciences, 78: 803-811.
  • Gülçin İ, 2006b. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217: 213-220.
  • Gülçin İ, 2008b. Measurement of antioxidant ability of melatonin and serotonin by the DMPD and CUPRAC methods as trolox equivalent. Journal of Enzyme Inhibition and Medicinal Chemistry, 23: 871-876.
  • Gülçin İ, 2009. Antioxidant activity of L-Adrenaline: An activity-structure insight. Chemico-Biological Interactions, 179: 71-80.
  • Gülçin İ, 2010. Antioxidant properties of resveratrol: A structure-activity insight. Innovative Food Science and Emerging Technologies, 11: 210-218.
  • Gülçin İ, 2011. Antioxidant activity of eugenol-a structure and activity relationship study. Journal of Medicinal Food, 14: 975-985.
  • Gülçin İ, 2012. Antioxidant activity of food constituents: an overview. Archives of Toxicology 86:345-396.
  • Gülçin İ, Beydemir Ş, Şat İG, Küfrevioğlu Öİ, 2005. Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Alimentaria, 34 (2): 193-202.
  • Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R, 2006. Screening of antioxidant and antiradical activity of monodesmosides and crude extract from Leontice smirnowii Tuber. Phytomedicine, 13: 343-351.
  • Gülçin İ, Tel AZ, Kirecci E, 2008. Antioxidant, antimicrobial, antifungal and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. International Journal of Food Properties, 11: 450-471.
  • Gülçin İ, Elias R, Gepdiremen A, Taoubi K, Köksal E, 2009. Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Wood Sciences and Technology, 43: 195–212.
  • Gülçin İ, Bursal E, Şehitoğlu HM, Bilsel M, Gören AC, 2010a. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food and Chemical Toxicology, 48: 2227-2238.
  • Gülçin İ, Kirecci E, Akkemik E, Topal F, Hisar O, 2010b. Antioxidant and antimicrobial activities of an aquatic plant: Duckweed (Lemna minor L.). Turkish Journal of Biology, 34: 175-188.
  • Gülçin İ, Topal F, Çakmakçı R, Gören AC, Bilsel M, Erdoğan U, 2011a. Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). Journal of Food Science, 76: C585-C593.
  • Gülçin İ, Topal F, Oztürk Sarikaya SB, Bursal E, Gören AC, Bilsel M, 2011b. Polyphenol contents and antioxidant properties of medlar (Mespilus germanica L.). Records of Natural Products, 5: 158-175.
  • Gülçin İ, Elmastaş M, Aboul-Enein HY, 2012. Antioxidant activity of clove oil-A powerful antioxidant source. Arabian Journal of Chemistry, 5: 489-499.
  • Hasanudin K, Hashim P, Mustafa S, 2016. Corn silk (Stigma maydis) in healthcare: a phytochemical and pharmacological review. Molecules, 17: 9697–9715.
  • Hu SL, Qiao CH, Yuan ZL, Li M, Ye JF, Ma HM, Wang JH, Xin SY, Zhang J, 2018. Therapy with high-dose long-term antioxidant free radicals for severe paraquat poisoning: A pilot study. Experimental and Therapeutic Medicine, 16 (6): 5149-5155.
  • Inatani R, Nakatani N, Fuwa H, 1983. Antioxidative effect of the constituents of rosemary (Rosemarinus officinalis L.) and their derivatives. Agricultural and Biological Chemistry, 47: 521-528.
  • Kolodziejczyk-Czepas J, Nowak P, Moniuszko-Szajwaj B, Kowalska I, Stochmal A, 2015. Free radical scavenging actions of three Trifolium species in the protection of blood plasma antioxidant capacity in vitro. Pharmaceutical Biology, 53 (9): 1277-1284.
  • Köksal E, Gülçin İ, Öztürk Sarıkaya SB, Bursal E, 2009. On the in vitro antioxidant activity of silymarine. Journal of Enzyme Inhibition and Medicinal Chemistry, 24: 395-405.
  • Lee J, Lee S, Kim SL, Choi JW, Seo JY, Choi DJ, Park YI, 2014. Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway. Life Sciences, 119: 47–55.
  • Lu Z, Ren T, Pan Y, Li X, Cong R, Lu J, 2016. Differences on photosynthetic limitations between leaf margins and leaf centers under potassium deficiency for Brassica napus L. Scientific Reports, 6: 21725.
  • MacDonald-Wicks LK, Wood LG, Garg ML, 2006. Methodology for the determination of biological antioxidant capacity in vitro: a review. Journal of the Science of Food and Agriculture, 86: 2046-2056.
  • Polat Köse L, Gülçin İ, Gören AC, Namiesnik J, Martinez-Ayala AL, Gorinstein S, 2015. LC–MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Industrial Crops and Products, 74: 712–721.
  • Polat Kose L, 2016. Determination of Antioxidant Capacity of Some Natural Compounds and Investigation of Their Inhibition Effects on AChE and BChE Enzymes and hCA I and II Isoenzymes. Ataturk University Graduate School of Natural and Applied Sciences, Ph. D. Thesis (Printed).
  • Polat Kose L, Bingol Z, Kaya R, Goren AC, Akincioglu H, Durmaz L, Koksal E, Alwasel SH, Gulcin I, 2020. Anticholinergic and Antioxidant Activities of Avocado (Folium perseae) Leaves – Phytochemical Content by LC-MS/MS Analysis. International Journal of Food Properties, 23: 878-893.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C, 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26: 1231-1237.
  • Sehitoglu MH, Han H, Kalin P, Gülçin İ, Ozkan A, Aboul-Enein HY, 2015. Pistachio (Pistacia vera L.) Gum: A potent inhibitor of reactive oxygen species. Journal of Enzyme Inhibition and Medicinal Chemistry, 30: 264-269.
  • Sepehri G, Derakhshanfar A, Zade FY, 2011. Protective effects of corn silk extract administration on gentamicin-induced nephrotoxicity in rat. Comparative Clinical Pathology, 20: 89–94.
  • Şerbetçi Tohma H, Gülçin İ, 2010. Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). International Journal of Food Properties, 13: 657-661.
  • Topal M., Gocer H., Topal F., Kalin P., Polat Köse L., Gülçin İ., Çetin Çakmak K., Küçük M., Durmaz L., Gören AC., Alwasel SH, 2016. Antioxidant, antiradical and anticholinergic properties of cynarin purified from the illyrian thistle (Onopordum illyricum L.). Journal of Enzyme Inhibition and Medicinal Chemistry, 31: 266–275.
  • Valenzuela AB, Nieto SK, 1996. Synthetic and natural antioxidants: food quality protectors. Grasas y Aceites, 47: 186-196.
  • Wang KJ, Zhao JL, 2019. Corn silk (Zea mays L.), a source of natural antioxidants with alpha-amylase, alpha-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomedicine and Pharmacotherapy, 110: 510-517.
  • Zhang Y, Wu LY, Ma ZS, Cheng J, Liu JB, 2016. Anti-diabetic, anti-oxidant and antihyperlipidemic activities of flavonoids fromcorn silk on STZ-induced diabetic mice. Molecules, 21: 7.

Mısır İpeği’nin (Zea Mays L.) Antioksidan ve Antiradikal Özelliklerinin Belirlenmesi

Year 2021, Volume: 11 Issue: 1, 402 - 412, 01.03.2021
https://doi.org/10.21597/jist.748111

Abstract

Bu çalışmada, mısır ipeği’nin (Zea mays L.) antioksidan ve antiradikal özellikleri araştırılmıştır. Bu amaçla mısır ipeği’nin su (SEZM) ve etanol (EEZM) ekstrelerinin farklı in vitro antioksidan analizlerle antioksidan ve antiradikal aktivitesi açıklanmıştır. Mısır ipek özütlerinin radikal giderme aktiviteleri, 1,1-difenil-2-pikrilhidrazil (DPPH.) ve 2,2'-azino-bis (3-etilbenzotiyazolin-6-sülfonik asit) radikal (ABTS•+) giderme deneyleriyle gerçekleştirilmiştir. Böylece, mısır ipeği özütlerinin indirgeyici gücü, Cu2+-Cu+ indirgeme (CUPRAC), Fe3+-Fe2+ ve [Fe3+-((TPTZ)2]3+-[Fe2+-(TPTZ)2]2+ (FRAP) indirgeme testleri ile değerlendirilmiştir. Her iki mısır ipek özütleri, belirli miktarda antioksidan aktivite göstermiştir. α-Tokoferol ((2R)-2,5,7,8-Tetrametil-2-[(4R,8R)-(4,8,12-trimetiltridesil)]-6-kromanol), troloks (3,4-dihidro-6-hidroksi-2,5,7,8-tetrametil-2H-1-benzopiran-2-karboksilik asit), bütillenmiş hidroksianisol (BHA) ve bütillenmiş hidroksitoluen (BHT) pozitif kontrol olarak kullanılmıştır. Ayrıca mısır ipeği özütlerinin DPPH• ve ABTS•+ radikallerini giderme etkileri için IC50 değerleri hesaplanmıştır.

References

  • Ak T, Gülçin İ, 2008.Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174: 27-37.
  • Apak R, Güçlü K, Özyürek M, Karademir SE, Erça E, 2006. The Cupric Ion Reducing Antioxidant Capacity And Polyphenolic Content Of Some Herbal Teas. International Journal of Food Science and Nutrition, 57: 292–304.
  • Blois MS, 1958. Antioxidant deteminations by the use of a stable free radical. Nature, 26: 1199-1200.
  • Bursal E, 2009. Determination of antioxidant and antiradical activities of kiwi fruit (Actinidia deliciosa), purification and characterization of carbonic anhydrase enzyme. Ataturk University Graduate School of Natural and Applied Sciences, Ph. D. Thesis (Printed).
  • Bursal E, Gülçin İ, 2011. Polyphenol contents and in vitro antioxidant activities of lyophilized aqueous extract of kiwifruit (Actinidia deliciosa). Food Research International, 44: 1482-1489.
  • Bursal E, Köksal E, Gülçin İ, Bilsel G, Gören AC, 2013. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Research International, 51: 66-74.
  • Çakmakçı S, Topdaş EF, Kalın P, Han H, Şekerci P, Köse LP, Gülçin I, 2015. Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. International Journal of Food Science and Technology, 50: 472-481.
  • Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C, 2008. Multi-target-directed ligands to combat neurodegenerative diseases. Journal of Medicinal Chemistry, 51: 347-372.
  • Chaiittianan R, Chayopas P, Rattanathongkom A, Tippayawat P, Sutthanut K, 2016. Anti-obesity potential of corn silks: relationships of phytochemicals and antioxidation, anti-pre-adipocyte proliferation, anti-adipogenesis, and lipolysis induction. Journal of Functional Foods, 23: 497–510.
  • Chang CC, Yuan W, Roan HY, Chang JL, Huang HC, Lee YC, Tsay HJ, Liu HK, 2016. The ethyl acetate fraction of corn silk exhibits dual antioxidant and anti-glycation activities and protects insulin-secreting cells from glucotoxicity. BMC Complementary and Alternative Medicine, 16: 432.
  • Choi DJ, Kim SL, Choi JW, Park YI, 2014. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells. Life Sciences, 109: 57–64.
  • Du Q, Zhao XH, Xia L, Jiang CJ, Wang XG, Han Y, Wang J, Yu HQ, 2019. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). Journal of Integrative Agriculture, 18 (2): 395-406.
  • Duh PD, 1998. Antioxidant activity of burdock (Arctium lappa L.): it's scavenging effect on free radical and active oxygen. Journal of the American Oil Chemists Society, 75: 455-461.
  • Ebrahimzadeh MA, Mahmoudi M, Ahangar N, Ehteshami S, Ansaroudi F, Nabavi SF, Nabavi SM, 2009. Antidepressant activity of corn silk. Pharmacologyonline, 3: 647–652.
  • Elmastaş M, Gülçin İ, Beydemir Ş, Küfrevioğlu Öİ, Aboul-Enein HY, 2006a. A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) seeds extracts. Analytical Letters, 39: 47-65.
  • Elmastaş M, Türkekul İ, Öztürk L, Gülçin İ, Işıldak Ö, Aboul-Enein HY, 2006b. The antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta). Combinatorial Chemistry and High Throughput Screening, 9: 443-448.
  • Göçer H, Gülçin İ, 2011. Caffeic acid phenethyl ester (CAPE): Correlation of structure and antioxidant properties. International Journal of Food Sciences and Nutrition, 62: 821-825.
  • Gurib-Fakim A, 2006. Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine, 27: 1-93.
  • Gülçin İ, 2006a. Antioxidant and antiradical activities of L-Carnitine. Life Sciences, 78: 803-811.
  • Gülçin İ, 2006b. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217: 213-220.
  • Gülçin İ, 2008b. Measurement of antioxidant ability of melatonin and serotonin by the DMPD and CUPRAC methods as trolox equivalent. Journal of Enzyme Inhibition and Medicinal Chemistry, 23: 871-876.
  • Gülçin İ, 2009. Antioxidant activity of L-Adrenaline: An activity-structure insight. Chemico-Biological Interactions, 179: 71-80.
  • Gülçin İ, 2010. Antioxidant properties of resveratrol: A structure-activity insight. Innovative Food Science and Emerging Technologies, 11: 210-218.
  • Gülçin İ, 2011. Antioxidant activity of eugenol-a structure and activity relationship study. Journal of Medicinal Food, 14: 975-985.
  • Gülçin İ, 2012. Antioxidant activity of food constituents: an overview. Archives of Toxicology 86:345-396.
  • Gülçin İ, Beydemir Ş, Şat İG, Küfrevioğlu Öİ, 2005. Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Alimentaria, 34 (2): 193-202.
  • Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R, 2006. Screening of antioxidant and antiradical activity of monodesmosides and crude extract from Leontice smirnowii Tuber. Phytomedicine, 13: 343-351.
  • Gülçin İ, Tel AZ, Kirecci E, 2008. Antioxidant, antimicrobial, antifungal and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. International Journal of Food Properties, 11: 450-471.
  • Gülçin İ, Elias R, Gepdiremen A, Taoubi K, Köksal E, 2009. Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Wood Sciences and Technology, 43: 195–212.
  • Gülçin İ, Bursal E, Şehitoğlu HM, Bilsel M, Gören AC, 2010a. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food and Chemical Toxicology, 48: 2227-2238.
  • Gülçin İ, Kirecci E, Akkemik E, Topal F, Hisar O, 2010b. Antioxidant and antimicrobial activities of an aquatic plant: Duckweed (Lemna minor L.). Turkish Journal of Biology, 34: 175-188.
  • Gülçin İ, Topal F, Çakmakçı R, Gören AC, Bilsel M, Erdoğan U, 2011a. Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). Journal of Food Science, 76: C585-C593.
  • Gülçin İ, Topal F, Oztürk Sarikaya SB, Bursal E, Gören AC, Bilsel M, 2011b. Polyphenol contents and antioxidant properties of medlar (Mespilus germanica L.). Records of Natural Products, 5: 158-175.
  • Gülçin İ, Elmastaş M, Aboul-Enein HY, 2012. Antioxidant activity of clove oil-A powerful antioxidant source. Arabian Journal of Chemistry, 5: 489-499.
  • Hasanudin K, Hashim P, Mustafa S, 2016. Corn silk (Stigma maydis) in healthcare: a phytochemical and pharmacological review. Molecules, 17: 9697–9715.
  • Hu SL, Qiao CH, Yuan ZL, Li M, Ye JF, Ma HM, Wang JH, Xin SY, Zhang J, 2018. Therapy with high-dose long-term antioxidant free radicals for severe paraquat poisoning: A pilot study. Experimental and Therapeutic Medicine, 16 (6): 5149-5155.
  • Inatani R, Nakatani N, Fuwa H, 1983. Antioxidative effect of the constituents of rosemary (Rosemarinus officinalis L.) and their derivatives. Agricultural and Biological Chemistry, 47: 521-528.
  • Kolodziejczyk-Czepas J, Nowak P, Moniuszko-Szajwaj B, Kowalska I, Stochmal A, 2015. Free radical scavenging actions of three Trifolium species in the protection of blood plasma antioxidant capacity in vitro. Pharmaceutical Biology, 53 (9): 1277-1284.
  • Köksal E, Gülçin İ, Öztürk Sarıkaya SB, Bursal E, 2009. On the in vitro antioxidant activity of silymarine. Journal of Enzyme Inhibition and Medicinal Chemistry, 24: 395-405.
  • Lee J, Lee S, Kim SL, Choi JW, Seo JY, Choi DJ, Park YI, 2014. Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway. Life Sciences, 119: 47–55.
  • Lu Z, Ren T, Pan Y, Li X, Cong R, Lu J, 2016. Differences on photosynthetic limitations between leaf margins and leaf centers under potassium deficiency for Brassica napus L. Scientific Reports, 6: 21725.
  • MacDonald-Wicks LK, Wood LG, Garg ML, 2006. Methodology for the determination of biological antioxidant capacity in vitro: a review. Journal of the Science of Food and Agriculture, 86: 2046-2056.
  • Polat Köse L, Gülçin İ, Gören AC, Namiesnik J, Martinez-Ayala AL, Gorinstein S, 2015. LC–MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Industrial Crops and Products, 74: 712–721.
  • Polat Kose L, 2016. Determination of Antioxidant Capacity of Some Natural Compounds and Investigation of Their Inhibition Effects on AChE and BChE Enzymes and hCA I and II Isoenzymes. Ataturk University Graduate School of Natural and Applied Sciences, Ph. D. Thesis (Printed).
  • Polat Kose L, Bingol Z, Kaya R, Goren AC, Akincioglu H, Durmaz L, Koksal E, Alwasel SH, Gulcin I, 2020. Anticholinergic and Antioxidant Activities of Avocado (Folium perseae) Leaves – Phytochemical Content by LC-MS/MS Analysis. International Journal of Food Properties, 23: 878-893.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C, 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26: 1231-1237.
  • Sehitoglu MH, Han H, Kalin P, Gülçin İ, Ozkan A, Aboul-Enein HY, 2015. Pistachio (Pistacia vera L.) Gum: A potent inhibitor of reactive oxygen species. Journal of Enzyme Inhibition and Medicinal Chemistry, 30: 264-269.
  • Sepehri G, Derakhshanfar A, Zade FY, 2011. Protective effects of corn silk extract administration on gentamicin-induced nephrotoxicity in rat. Comparative Clinical Pathology, 20: 89–94.
  • Şerbetçi Tohma H, Gülçin İ, 2010. Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). International Journal of Food Properties, 13: 657-661.
  • Topal M., Gocer H., Topal F., Kalin P., Polat Köse L., Gülçin İ., Çetin Çakmak K., Küçük M., Durmaz L., Gören AC., Alwasel SH, 2016. Antioxidant, antiradical and anticholinergic properties of cynarin purified from the illyrian thistle (Onopordum illyricum L.). Journal of Enzyme Inhibition and Medicinal Chemistry, 31: 266–275.
  • Valenzuela AB, Nieto SK, 1996. Synthetic and natural antioxidants: food quality protectors. Grasas y Aceites, 47: 186-196.
  • Wang KJ, Zhao JL, 2019. Corn silk (Zea mays L.), a source of natural antioxidants with alpha-amylase, alpha-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomedicine and Pharmacotherapy, 110: 510-517.
  • Zhang Y, Wu LY, Ma ZS, Cheng J, Liu JB, 2016. Anti-diabetic, anti-oxidant and antihyperlipidemic activities of flavonoids fromcorn silk on STZ-induced diabetic mice. Molecules, 21: 7.
There are 53 citations in total.

Details

Primary Language Turkish
Journal Section Kimya / Chemistry
Authors

Leyla Polat Köse 0000-0001-5759-7889

Publication Date March 1, 2021
Submission Date June 4, 2020
Acceptance Date October 20, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Polat Köse, L. (2021). Mısır İpeği’nin (Zea Mays L.) Antioksidan ve Antiradikal Özelliklerinin Belirlenmesi. Journal of the Institute of Science and Technology, 11(1), 402-412. https://doi.org/10.21597/jist.748111
AMA Polat Köse L. Mısır İpeği’nin (Zea Mays L.) Antioksidan ve Antiradikal Özelliklerinin Belirlenmesi. J. Inst. Sci. and Tech. March 2021;11(1):402-412. doi:10.21597/jist.748111
Chicago Polat Köse, Leyla. “Mısır İpeği’nin (Zea Mays L.) Antioksidan Ve Antiradikal Özelliklerinin Belirlenmesi”. Journal of the Institute of Science and Technology 11, no. 1 (March 2021): 402-12. https://doi.org/10.21597/jist.748111.
EndNote Polat Köse L (March 1, 2021) Mısır İpeği’nin (Zea Mays L.) Antioksidan ve Antiradikal Özelliklerinin Belirlenmesi. Journal of the Institute of Science and Technology 11 1 402–412.
IEEE L. Polat Köse, “Mısır İpeği’nin (Zea Mays L.) Antioksidan ve Antiradikal Özelliklerinin Belirlenmesi”, J. Inst. Sci. and Tech., vol. 11, no. 1, pp. 402–412, 2021, doi: 10.21597/jist.748111.
ISNAD Polat Köse, Leyla. “Mısır İpeği’nin (Zea Mays L.) Antioksidan Ve Antiradikal Özelliklerinin Belirlenmesi”. Journal of the Institute of Science and Technology 11/1 (March 2021), 402-412. https://doi.org/10.21597/jist.748111.
JAMA Polat Köse L. Mısır İpeği’nin (Zea Mays L.) Antioksidan ve Antiradikal Özelliklerinin Belirlenmesi. J. Inst. Sci. and Tech. 2021;11:402–412.
MLA Polat Köse, Leyla. “Mısır İpeği’nin (Zea Mays L.) Antioksidan Ve Antiradikal Özelliklerinin Belirlenmesi”. Journal of the Institute of Science and Technology, vol. 11, no. 1, 2021, pp. 402-1, doi:10.21597/jist.748111.
Vancouver Polat Köse L. Mısır İpeği’nin (Zea Mays L.) Antioksidan ve Antiradikal Özelliklerinin Belirlenmesi. J. Inst. Sci. and Tech. 2021;11(1):402-1.