Research Article
BibTex RIS Cite

Strength and Ductility of Concrete Encased Composite Columns Under Axial Force and Moment

Year 2021, Volume: 11 Issue: 1, 333 - 344, 01.03.2021
https://doi.org/10.21597/jist.789886

Abstract

The American Concrete Institute (ACI 318) specifies calculations and boundary requirements for the AISC-LRFD Specification, AISC Seismic Regulations and EN-1994 composite column design. Using these regulations, the inelastic behaviour of structural steel and concrete is explained by using the stress-strain properties of concrete under the influence of strength and winding. In this study, a composite column was designed by using section effects on a sample steel structure. The exemplary structure was chosen as the 9-storey Los Angeles building from the SAC buildings given in FEMA 355-C. The analyzes of the composite column were evaluated according to their strength and ductility properties. In this evaluation, the strengths, areas and stirrup parameters of the structural steel and concrete used in the composite column were determined proportionally. Looking at the ACI 318 and AISC-LRFD and EN-1994 regulations, there were differences in terms of nominal strengths. ANSYS finite element program was used to determine the behaviour of the composite column under compound influences. The sample column was analyzed in two different structural sections, structural steel and composite. Also, the effect of mesh size on the results in the finite element analysis of embedded composite columns, the unit strain and stresses of steel and composite columns under the same cross-section effects were compared.

References

  • ACI 318-08, 2008. Building code requirement for structural concrete (ACI 318–08) and commentary. USA: American Concrete Institute.
  • AIJ, 2014. AIJ standard for structural calculation of steel reinforced concrete structures. Architectural Institute of Japan, Japan.
  • Altunışık A-C, Günaydın M, Genç A-F, Okur F-Y, 2018. İnşaat Mühendisliğinde ANSYS Uygulamaları. Dynamic Academy Yazılım İnşaat San. Tic. Ltd. Şti, Trabzon.
  • Amiri P-K, Mehr E-B, 2015. Analysis of composite columns based on performance. Canadian Journal of Pure and Applied Sciences, vol. 9, no. 2, pp. 3481–3485.
  • ANSI/AISC 360-16, 2016. Specification for structural steel buildings. Chicago, USA: American Institute of Steel Construction (AISC).
  • Chen C-C, Chen C-C, Hoang TT, 2016. Role of concrete confinement of wide-flange structural steel shape in steel reinforced concrete columns under cyclic loading. Engineering Structures, vol. 110, pp. 79–87.
  • ÇYHY-2016, 2016. Çelik Yapıların Tasarım, Hesap ve Yapım Esasları Yönetmeliği. Çevre ve Şehircilik Bakanlığı, Ankara.
  • EN 1994-1-1. Eurocode 4, 2004. Design of composite steel and concrete structures-Part 1- 1. General rules and rules for buildings.
  • Han D-J, Kim K-S, 1995. A study on the strength and hysteretic characteristics of steel reinforced concrete columns-In the case of columns loaded eccentrically. Journal of the Architectural Institute of Korea,11(4):183–90. in Korean.
  • Hwang H-J, 2018. Prefabricated Steel-Reinforced Concrete Composite Column. New Trends Structures Engineering.
  • İnce G, İnce H-H, Kaya F, 2015. Kompozit Yapı Sistemlerinin İncelenmesi Investigation of Composite Building Systems. vol. 6, pp. 43–47.
  • JGJ 138, 2016. Code for design of composite structures. China: Ministry of Housing and Urban-Rural Development of the People’s Republic of China.
  • Kim C-S, Park H-G, Chung K-S, 2013. Eccentric axial load capacity of high-strength steel-concrete composite columns of various sectional shapes. Journal of Structural Engineering, 140(4):04013091.
  • Kim C-S, Park H-G, Chung K-S, 2012. Eccentric axial load testing for concreteencased steel columns using 800 MPa steel and 100 MPa concrete. Journal of Structural Engineering, 138(8):1019–31.
  • Kulak M, 2019. Çelik yapıların zaman tanım alanında doğrusal analizi ve spektrum eşleştirme parametrelerinin etkisi, Eskişehir Teknik Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi (Basılmış).
  • Lacki P, Derlatka A, Kasza P, 2018. Comparison of steel-concrete composite column and steel column. Composite Structures, vol. 202, no. September 2017, pp. 82–88.
  • Lai B, Liew J-Y-R, Le Hoang A, Xiong M, 2019. A unified approach to evaluate axial force-moment interaction curves of concrete encased steel composite columns. Engineering Structures, vol. 201, no. March, p. 109841.
  • Lai B, Richard Liew J-Y, Wang T, 2019. Buckling behaviour of high strength concrete encased steel composite columns. Journal of Constructional Steel Research, vol. 154, pp. 27–42.
  • Lai B, Liew J-Y-R, Xiong M, 2019. Experimental study on high strength concrete encased steel composite short columns. Construction and Building Materials, vol. 228, p. 116640.
  • Ma T-Y, Liu X, Hu Y-F, Chung K-F, Li G-Q, 2018. Structural behaviour of slender columns of high strength S690 steel welded H-sections under compression. Engineering Structures, vol. 157, no. September 2017, pp. 75–85.
  • Naka T, Morita K, Tachibana M, 1997. Strength and hysteretic characteristics of steelreinforced concrete columns. Trans AIJ 250:47–58. in Japanese.
  • Pereira M-F, De Nardin S, El Debs A-L-H-C, 2016. Structural behavior of partially encased composite columns under axial loads. Steel and Composite Structures, vol. 20, no. 6, pp. 1305–1322.
  • Sevim B, Altunışık A-C, 2017. Kompozit Kolon Elemanların Modal Davranışlarının Belirlenmesi. Dicle Üniversitesi Mühendislik Fakültesi Dergisi, no. 212, pp. 13–24.
  • Shanmugam N-E, Lakshmi B, 2001. State of the art report on steel-concrete composite columns. Journal of Constructional Steel Research, vol. 57, no. 10, pp. 1041–1080.
  • Wakabayashi M, Minami K, Komura K, 1971. An experiment study on elastic-plastic characteristics of concrete members using an encased H-section subjected to combined bending and axial force. Bulletin of the Disaster Prevention Research Institute Kyoto University. 14A:417–37. in Japanese.
  • Wang Q, Zhao D, Guan P, 2004. Experimental study on the strength and ductility of steel tubular columns filled with steel-reinforced concrete. Engineering Structures, vol. 26, no. 7, pp. 907–915, 2004.
  • Weng C-C, Yen S-I, 2002. Comparisons of concrete-encased composite column strength provisions of ACI code and AISC specification. Engineering Structures, vol. 24, no. 1, pp. 59–72.
  • Yu Q, Lu Z-D, 2009. Research on the static performance of eccentric steel reinforced concrete column. Building Structure, 39(6):34–8. in Chinese.
  • Yun X, Gardner L, 2017. Stress-strain curves for hot-rolled steels. Journal of Constructional Steel Research, vol. 133, pp. 36–46.
  • Zhao G-T, Wang C-H, Gao C-Y, Wang C-X, 2006. Experiment study on the capacity of SRC long column subjected to eccentric compression. Journal Of Baotou Unıversıty Of Iron And Steel Technology, 25(4):384–400. in Chinese.
  • Zhu W-Q, Meng G, Jia J-Q, 2014. Experimental studies on axial load performance of high-strength concrete short columns. Proceedings of the Institution of Civil Engineers Structures and Buildings, vol. 167, no. 9, pp. 509–519.
  • Zhu M, Liu J, Wang Q, Feng X. 2010. Experimental research on square steel tubular columns filled with steel-reinforced self-consolidating high-strength concrete under axial load. Engineering Structures, vol. 32, no. 8, pp. 2278–2286, 2010.
  • Zhu W, Jia J, Gao J, Zhang F, 2016. Experimental study on steel reinforced high-strength concrete columns under cyclic lateral force and constant axial load. Engineering Structures, vol. 125, pp. 191–204.

Eksenel Yük ve Moment Etkisi Altındaki Çelik Gömme Kompozit Kolonların Dayanımları ve Süneklikleri

Year 2021, Volume: 11 Issue: 1, 333 - 344, 01.03.2021
https://doi.org/10.21597/jist.789886

Abstract

Amerikan Beton Enstitüsü (ACI 318), AISC-LRFD Şartnamesi, AISC Sismik Yönetmelikleri ve EN-1994 kompozit kolon tasarımına yönelik hesaplamaları ve sınır şartlarını belirtmektedir. Bu yönetmelikler kullanılarak, yapısal çelik ve betonun elastik olmayan davranışı betonun gerilme-şekil değiştirme özelliklerinin dayanım ve sargı etkisi altında değişimleri kullanılarak açıklanmıştır. Bu çalışmada örnek bir çelik yapı üzerinden alınan kesit tesirleri kullanılarak kompozit kolon tasarlanmıştır. Örnek yapı FEMA 355-C de verilen SAC binalarından 9 katlı Los Angeles binası olarak seçilmiştir. Kompozit kolona ait analizler dayanım ve süneklik özelliklerine göre değerlendirilmişlerdir. Bu değerlendirmede kompozit kolonda kullanılan yapısal çelik ve betonun ayrı ayrı dayanımları, alanları ve etriye aralığı parametreleri orantısal olarak belirlenmiştir. ACI 318 ve AISC-LRFD ve EN-1994 yönetmeliklerine bakıldığında nominal dayanımlar açısından farklılıklar olduğu görülmüştür. Kompozit kolonun bileşik etkiler altındaki davranışını belirlemek için ANSYS sonlu elemanlar program kullanılmıştır. Örnek kolon yapısal çelik ve kompozit olmak üzere iki farklı yapısal kesit olarak analiz edilmiştir. Ayrıca gömme kompozit kolonların sonlu elemanlar ortamında programlanmasında ağ sıklığının sonuçlara etkisi, aynı kesit tesirleri altında çelik ve kompozit kolonlarda oluşan göçme mekanizmaları ile birim şekil-değiştirme ve gerilmeleri karşılaştırılmıştır.

References

  • ACI 318-08, 2008. Building code requirement for structural concrete (ACI 318–08) and commentary. USA: American Concrete Institute.
  • AIJ, 2014. AIJ standard for structural calculation of steel reinforced concrete structures. Architectural Institute of Japan, Japan.
  • Altunışık A-C, Günaydın M, Genç A-F, Okur F-Y, 2018. İnşaat Mühendisliğinde ANSYS Uygulamaları. Dynamic Academy Yazılım İnşaat San. Tic. Ltd. Şti, Trabzon.
  • Amiri P-K, Mehr E-B, 2015. Analysis of composite columns based on performance. Canadian Journal of Pure and Applied Sciences, vol. 9, no. 2, pp. 3481–3485.
  • ANSI/AISC 360-16, 2016. Specification for structural steel buildings. Chicago, USA: American Institute of Steel Construction (AISC).
  • Chen C-C, Chen C-C, Hoang TT, 2016. Role of concrete confinement of wide-flange structural steel shape in steel reinforced concrete columns under cyclic loading. Engineering Structures, vol. 110, pp. 79–87.
  • ÇYHY-2016, 2016. Çelik Yapıların Tasarım, Hesap ve Yapım Esasları Yönetmeliği. Çevre ve Şehircilik Bakanlığı, Ankara.
  • EN 1994-1-1. Eurocode 4, 2004. Design of composite steel and concrete structures-Part 1- 1. General rules and rules for buildings.
  • Han D-J, Kim K-S, 1995. A study on the strength and hysteretic characteristics of steel reinforced concrete columns-In the case of columns loaded eccentrically. Journal of the Architectural Institute of Korea,11(4):183–90. in Korean.
  • Hwang H-J, 2018. Prefabricated Steel-Reinforced Concrete Composite Column. New Trends Structures Engineering.
  • İnce G, İnce H-H, Kaya F, 2015. Kompozit Yapı Sistemlerinin İncelenmesi Investigation of Composite Building Systems. vol. 6, pp. 43–47.
  • JGJ 138, 2016. Code for design of composite structures. China: Ministry of Housing and Urban-Rural Development of the People’s Republic of China.
  • Kim C-S, Park H-G, Chung K-S, 2013. Eccentric axial load capacity of high-strength steel-concrete composite columns of various sectional shapes. Journal of Structural Engineering, 140(4):04013091.
  • Kim C-S, Park H-G, Chung K-S, 2012. Eccentric axial load testing for concreteencased steel columns using 800 MPa steel and 100 MPa concrete. Journal of Structural Engineering, 138(8):1019–31.
  • Kulak M, 2019. Çelik yapıların zaman tanım alanında doğrusal analizi ve spektrum eşleştirme parametrelerinin etkisi, Eskişehir Teknik Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi (Basılmış).
  • Lacki P, Derlatka A, Kasza P, 2018. Comparison of steel-concrete composite column and steel column. Composite Structures, vol. 202, no. September 2017, pp. 82–88.
  • Lai B, Liew J-Y-R, Le Hoang A, Xiong M, 2019. A unified approach to evaluate axial force-moment interaction curves of concrete encased steel composite columns. Engineering Structures, vol. 201, no. March, p. 109841.
  • Lai B, Richard Liew J-Y, Wang T, 2019. Buckling behaviour of high strength concrete encased steel composite columns. Journal of Constructional Steel Research, vol. 154, pp. 27–42.
  • Lai B, Liew J-Y-R, Xiong M, 2019. Experimental study on high strength concrete encased steel composite short columns. Construction and Building Materials, vol. 228, p. 116640.
  • Ma T-Y, Liu X, Hu Y-F, Chung K-F, Li G-Q, 2018. Structural behaviour of slender columns of high strength S690 steel welded H-sections under compression. Engineering Structures, vol. 157, no. September 2017, pp. 75–85.
  • Naka T, Morita K, Tachibana M, 1997. Strength and hysteretic characteristics of steelreinforced concrete columns. Trans AIJ 250:47–58. in Japanese.
  • Pereira M-F, De Nardin S, El Debs A-L-H-C, 2016. Structural behavior of partially encased composite columns under axial loads. Steel and Composite Structures, vol. 20, no. 6, pp. 1305–1322.
  • Sevim B, Altunışık A-C, 2017. Kompozit Kolon Elemanların Modal Davranışlarının Belirlenmesi. Dicle Üniversitesi Mühendislik Fakültesi Dergisi, no. 212, pp. 13–24.
  • Shanmugam N-E, Lakshmi B, 2001. State of the art report on steel-concrete composite columns. Journal of Constructional Steel Research, vol. 57, no. 10, pp. 1041–1080.
  • Wakabayashi M, Minami K, Komura K, 1971. An experiment study on elastic-plastic characteristics of concrete members using an encased H-section subjected to combined bending and axial force. Bulletin of the Disaster Prevention Research Institute Kyoto University. 14A:417–37. in Japanese.
  • Wang Q, Zhao D, Guan P, 2004. Experimental study on the strength and ductility of steel tubular columns filled with steel-reinforced concrete. Engineering Structures, vol. 26, no. 7, pp. 907–915, 2004.
  • Weng C-C, Yen S-I, 2002. Comparisons of concrete-encased composite column strength provisions of ACI code and AISC specification. Engineering Structures, vol. 24, no. 1, pp. 59–72.
  • Yu Q, Lu Z-D, 2009. Research on the static performance of eccentric steel reinforced concrete column. Building Structure, 39(6):34–8. in Chinese.
  • Yun X, Gardner L, 2017. Stress-strain curves for hot-rolled steels. Journal of Constructional Steel Research, vol. 133, pp. 36–46.
  • Zhao G-T, Wang C-H, Gao C-Y, Wang C-X, 2006. Experiment study on the capacity of SRC long column subjected to eccentric compression. Journal Of Baotou Unıversıty Of Iron And Steel Technology, 25(4):384–400. in Chinese.
  • Zhu W-Q, Meng G, Jia J-Q, 2014. Experimental studies on axial load performance of high-strength concrete short columns. Proceedings of the Institution of Civil Engineers Structures and Buildings, vol. 167, no. 9, pp. 509–519.
  • Zhu M, Liu J, Wang Q, Feng X. 2010. Experimental research on square steel tubular columns filled with steel-reinforced self-consolidating high-strength concrete under axial load. Engineering Structures, vol. 32, no. 8, pp. 2278–2286, 2010.
  • Zhu W, Jia J, Gao J, Zhang F, 2016. Experimental study on steel reinforced high-strength concrete columns under cyclic lateral force and constant axial load. Engineering Structures, vol. 125, pp. 191–204.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section İnşaat Mühendisliği / Civil Engineering
Authors

Fethullah Uslu 0000-0001-8057-5119

Kıvanç Taşkın 0000-0001-8024-4600

Mustafa Halûk Saraçoğlu 0000-0003-3842-5699

Publication Date March 1, 2021
Submission Date September 3, 2020
Acceptance Date October 13, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Uslu, F., Taşkın, K., & Saraçoğlu, M. H. (2021). Eksenel Yük ve Moment Etkisi Altındaki Çelik Gömme Kompozit Kolonların Dayanımları ve Süneklikleri. Journal of the Institute of Science and Technology, 11(1), 333-344. https://doi.org/10.21597/jist.789886
AMA Uslu F, Taşkın K, Saraçoğlu MH. Eksenel Yük ve Moment Etkisi Altındaki Çelik Gömme Kompozit Kolonların Dayanımları ve Süneklikleri. J. Inst. Sci. and Tech. March 2021;11(1):333-344. doi:10.21597/jist.789886
Chicago Uslu, Fethullah, Kıvanç Taşkın, and Mustafa Halûk Saraçoğlu. “Eksenel Yük Ve Moment Etkisi Altındaki Çelik Gömme Kompozit Kolonların Dayanımları Ve Süneklikleri”. Journal of the Institute of Science and Technology 11, no. 1 (March 2021): 333-44. https://doi.org/10.21597/jist.789886.
EndNote Uslu F, Taşkın K, Saraçoğlu MH (March 1, 2021) Eksenel Yük ve Moment Etkisi Altındaki Çelik Gömme Kompozit Kolonların Dayanımları ve Süneklikleri. Journal of the Institute of Science and Technology 11 1 333–344.
IEEE F. Uslu, K. Taşkın, and M. H. Saraçoğlu, “Eksenel Yük ve Moment Etkisi Altındaki Çelik Gömme Kompozit Kolonların Dayanımları ve Süneklikleri”, J. Inst. Sci. and Tech., vol. 11, no. 1, pp. 333–344, 2021, doi: 10.21597/jist.789886.
ISNAD Uslu, Fethullah et al. “Eksenel Yük Ve Moment Etkisi Altındaki Çelik Gömme Kompozit Kolonların Dayanımları Ve Süneklikleri”. Journal of the Institute of Science and Technology 11/1 (March 2021), 333-344. https://doi.org/10.21597/jist.789886.
JAMA Uslu F, Taşkın K, Saraçoğlu MH. Eksenel Yük ve Moment Etkisi Altındaki Çelik Gömme Kompozit Kolonların Dayanımları ve Süneklikleri. J. Inst. Sci. and Tech. 2021;11:333–344.
MLA Uslu, Fethullah et al. “Eksenel Yük Ve Moment Etkisi Altındaki Çelik Gömme Kompozit Kolonların Dayanımları Ve Süneklikleri”. Journal of the Institute of Science and Technology, vol. 11, no. 1, 2021, pp. 333-44, doi:10.21597/jist.789886.
Vancouver Uslu F, Taşkın K, Saraçoğlu MH. Eksenel Yük ve Moment Etkisi Altındaki Çelik Gömme Kompozit Kolonların Dayanımları ve Süneklikleri. J. Inst. Sci. and Tech. 2021;11(1):333-44.