Research Article
BibTex RIS Cite

A Cinnamaldehyde-based Colorimetric Sensor for Hg2+ Detection in Aqueous Solutions

Year 2021, Volume: 11 Issue: 1, 376 - 383, 01.03.2021
https://doi.org/10.21597/jist.791354

Abstract

When heavy metal ions join the human food chain, they cause severe harm to the human liver, bone, kidney, teeth, and central nervous system. Therefore, the development of new techniques for rapid, easy, simple, reliable, and low-cost identification of toxic metal ions is a key point for improving public health. Naked eye detection of hazardous metal ions with colorimetric sensors has been gained attention due to its applicability among common people. In this study, the sensor properties of 3-methyl-4-((3-phenylallylidene)amino)phenol (SAR) were investigated. The structure of the sensor were verified by Mass spectrometry, 1H NMR, and 13C NMR. In the applications, firstly the color of the sensor was compared with/without metal ions, then the measurements were made in the UV-Vis spectrophotometer. UV-Vis spectroscopic studies exhibit that SAR shows excellent sensitivity and selectivity to Hg2+ ions in MeOH (methanol) / H2O (water) (v/v, 1:1). SAR can detect Hg2+ ions by color change from yellow to pink. Job's method and UV-Vis titration values at 528 nm were used to determine the complex stoichiometry between SAR and Hg2+ and the complex (SAR/Hg2+) stoichiometry was found to be 2:1. The binding constant was found to be 1.56 х 1012 M-2. Additionally, the binding between the sensor and Hg2+ was reversible. The limit of detection was also determined and calculated as 7.89 × 10-6 M.

References

  • Aydin Z, Keles M, 2017. Highly Selective Schiff Base Derivatives for Colorimetric Detection of Al3+. Turkish Journal of Chemistry, 41(1): 89-98.
  • Aydin Z, Keles M, 2020a. Colorimetric Detection of Copper(II) Ions Using Schiff Base Derivatives. ChemistrySelect, 5(25): 7375-7381.
  • Aydin Z, Keles M, 2020b. Colorimetric Cadmium Ion Detection in Aqueous Solutions by Newly Synthesized Schiff Bases. Turkish Journal of Chemistry, 44(3): 791-804.
  • Aydin Z, Wei Y, Guo M, 2014. An “Off–On” Optical Sensor for Mercury Ion Detection in Aqueous Solution and Living Cells. Inorganic Chemistry Communications, 50: 84-87.
  • Berhanu AL, Mohiuddin I, Malik AK, Aulakh JS, Kumar V, Kim KH, 2019. A Review of the Applications of Schiff Bases as Optical Chemical Sensors. TrAC Trends in Analytical Chemistry, 116: 74-91.
  • Bhan A, Sarkar NN, 2005. Mercury in the Environment: Effect on Health and Reproduction. Reviews on Environmental Health, 20(1): 39-56.
  • Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W, 2019. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chemical Reviews, 119(18): 10403-10519.
  • Cesaretti A, Bonaccorso C, Carboni V, Giubila MS, Fortuna CG, Elisei F, Spalletti A, 2019. Dyes and Pigments, 162: 440-450.
  • Chen CG, Vijay N, Thirumalaivasan N, Velmathi S, Wu SP, 2019. Coumarin-Based Hg2+ Fluorescent Probe: Fluorescence Turn-On Detection for Hg2+ Bioimaging in Living Cells and Zebrafish. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 219: 135-140.
  • Chen S, Xue Z, Gao N, Yang X, Zang L, 2020. Perylene Diimide-Based Fluorescent and Colorimetric Sensors for Environmental Detection. Sensors, 20(3): 917.
  • Cho H, Chae JB, Kim C, 2019. Cinnamaldehyde-Based Chemosensor for Colorimetric Detection of Cu2+ and Hg2+ in A Near-Perfect Aqueous Solution. Chemistry Select, 4(9): 2795-2801.
  • DeSilva TM., Veglia G, Porcelli F, Prantner AM, Opella SJ, 2002. Selectivity in Heavy Metal‐Binding to Peptides and Proteins. Biopolymers: Original Research on Biomolecules, 64(4): 189-197
  • Erxleben H, Ruzicka J, 2005. Atomic Absorption Spectroscopy for Mercury, Automated by Sequential Injection and Miniaturized in Lab-On-Valve System. Analytical Chemistry, 77(16): 5124-5128.
  • Fernandes Azevedo B, Barros Furieri L, Peçanha FM, Wiggers GA, Frizera Vassallo P, Ronacher Simões M, Stefanon I, 2012. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems. BioMed Research International, 949048.
  • Han FX, Patterson WD, Xia Y, Sridhar BM, Su Y, 2006. Rapid Determination of Mercury in Plant And Soil Samples Using İnductively Coupled Plasma Atomic Emission Spectroscopy, A Comparative Study. Water, Air, and Soil Pollution, 170(1-4): 161-171.
  • Hong M, Chen Y, Zhang Y, Xu D, 2019. A Novel Rhodamine-Based Hg2+ Sensor with A Simple Structure and Fine Performance. Analyst, 144(24): 7351-7358.
  • Hong M, Lu X, Chen Y, Xu D, 2016. A novel rhodamine-based colorimetric and fluorescent sensor for Hg2+in water matrix and living cell. Sensors and Actuators B, 232:28-33.
  • Houston MC, 2011. Role of Mercury Toxicity in Hypertension, Cardiovascular Disease, and Stroke. The Journal of Clinical Hypertension, 13(8): 621-627.
  • Kang JH, Chae JB, Kim C, 2018. A Multi-Functional Chemosensor for Highly Selective Ratiometric Fluorescent Detection of Silver(I) Ion and Dual Turn-On Fluorescent and Colorimetric Detection of Sulfide. Royal Society Open Science, 5: 180293.
  • Kar C, Samanta S, Goswami S, Ramesh A, Das G, 2015. A Single Probe to Sense Al(III) Colorimetrically And Cd(II) by Turn-On Fluorescence in Physiological Conditions and Live Cells, Corroborated by X-Ray Crystallographic and Theoretical Studies. Dalton Transactions, 44(9): 4123-4132.
  • Lee SY, Lee JJ, Bok KH, Kim JA, Kim SY, Kim C, 2016, A colorimetric chemosensor for the sequential recognition of Mercury (II)and iodide in aqueous media. Inorganic Chemistry Communications, 70: 147-152
  • Masindi V, Muedi KL, 2018. Environmental Contamination by Heavy Metals. Heavy Metals, 10: 115-132.
  • Passariello B, Barbaro M, Quaresima S, Casciello A, Marabini A, 1996. Determination of Mercury by Inductively Coupled Plasma—Mass Spectrometry. Microchemical Journal, 54(4): 348-354
  • Peralta-Domínguez D, Rodríguez M, Ramos-Ortíz G, Maldonado JL, Meneses-Nava MA, Barbosa-García O, Farfán N, 2015. A Schiff Base Derivative from Cinnamaldehyde for Colorimetric Detection of Ni2+ in Water. Sensors and Actuators B: Chemical, 207: 511-517.
  • Rubino FM, 2015. Toxicity of Glutathione-Binding Metals: A Review of Targets and Mechanisms. Toxics, 3(1): 20-62.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ, 2012. Heavy Metal Toxicity and the Environment. A. Luch (Ed.), Molecular, Clinical and Environmental Toxicology, Springer Volume: 101, pp. 133-164. Basel-Switzerland
  • Tigreros A, Portilla J, 2020. Recent Progress in Chemosensors Based on Pyrazole Derivatives. RSC Advances, 10(33): 19693-19712.
  • Upadhyay S, Singh A, Sinha R, Omer S, Negi K, 2019. Colorimetric Chemosensors for D-Metal Ions: A Review in the Past, Present and Future Prospect. Journal of Molecular Structure, 1193: 89-102.
  • Xue Z, Liu T, Liu H, 2019. Naked-eye Chromogenic and Fluorogenic Chemosensor for Mercury(II) Ion Based on Substituted Distyryl BODIPY Complex. Dyes and Pigments, 165: 65-70.

Sulu Çözeltilerde Hg2+ Tespiti için Sinnamaldehit Türevi Bir Kolorimetrik Sensör

Year 2021, Volume: 11 Issue: 1, 376 - 383, 01.03.2021
https://doi.org/10.21597/jist.791354

Abstract

Ağır metal iyonları insan gıda zincirine girdiklerinde insanın merkezi sinir sistemine, karaciğerine, böbreğine, kemiğine ve dişlerine ciddi zararlar vermektedir. Bu nedenle, toksik metal iyonlarının basit, hızlı, hassas ve düşük maliyetli tanımlanması için yeni tekniklerin geliştirilmesi halk sağlığının iyileştirilmesi için gereklidir. Ağır metal iyonlarının kolorimetik sensörler yardımıyla çıplak gözle algılanması, her insan tarafından uygulanabilirliği nedeniyle önem taşımaktadır. Bu çalışmada, kolay uygulama potansiyeli olan 3-methyl-4-((3-phenylallylidene)amino)phenol (SAR) bileşiğinin sensör özelliği incelenmiştir. Sensörün yapısı, 1H NMR, 13C NMR ve kütle spektrometresi ile doğrulanmıştır. Uygulamalarda, ilk olarak sensörün rengi metal iyonlarıyla / metal iyonları olmadan karşılaştırılmış, daha sonra ölçümler UV-Vis spektrofotometresinde yapılmıştır. UV-Vis spektroskopik çalışmaları, SAR'ın MeOH (metanol) / H2O (su) (v/ v 1: 1) içerisinde Hg2+ iyonlarına yüksek seçicilik ve duyarlılığı gösterdiğini ortaya koymuştur. Sensör, sarıdan pembeye renk değiştirerek Hg2+ iyonlarını algılamıştır. SAR ve Hg2+ arasındaki kompleks stokiyometrisi, Job yöntemi ve 528 nm'de UV-Vis titrasyon değerleri kullanılarak hesaplanmış ve 2:1 olarak bulunmuştur. Bağlanma sabiti 1.56 × 1012 M-2 olarak bulunmuştur. Ayrıca, sensör ve Hg2+ arasındaki bağlanma tersinirdir. Tespit sınırı da belirlenmiş ve 7.89 × 10-6 M olarak hesaplanmıştır.

References

  • Aydin Z, Keles M, 2017. Highly Selective Schiff Base Derivatives for Colorimetric Detection of Al3+. Turkish Journal of Chemistry, 41(1): 89-98.
  • Aydin Z, Keles M, 2020a. Colorimetric Detection of Copper(II) Ions Using Schiff Base Derivatives. ChemistrySelect, 5(25): 7375-7381.
  • Aydin Z, Keles M, 2020b. Colorimetric Cadmium Ion Detection in Aqueous Solutions by Newly Synthesized Schiff Bases. Turkish Journal of Chemistry, 44(3): 791-804.
  • Aydin Z, Wei Y, Guo M, 2014. An “Off–On” Optical Sensor for Mercury Ion Detection in Aqueous Solution and Living Cells. Inorganic Chemistry Communications, 50: 84-87.
  • Berhanu AL, Mohiuddin I, Malik AK, Aulakh JS, Kumar V, Kim KH, 2019. A Review of the Applications of Schiff Bases as Optical Chemical Sensors. TrAC Trends in Analytical Chemistry, 116: 74-91.
  • Bhan A, Sarkar NN, 2005. Mercury in the Environment: Effect on Health and Reproduction. Reviews on Environmental Health, 20(1): 39-56.
  • Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W, 2019. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chemical Reviews, 119(18): 10403-10519.
  • Cesaretti A, Bonaccorso C, Carboni V, Giubila MS, Fortuna CG, Elisei F, Spalletti A, 2019. Dyes and Pigments, 162: 440-450.
  • Chen CG, Vijay N, Thirumalaivasan N, Velmathi S, Wu SP, 2019. Coumarin-Based Hg2+ Fluorescent Probe: Fluorescence Turn-On Detection for Hg2+ Bioimaging in Living Cells and Zebrafish. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 219: 135-140.
  • Chen S, Xue Z, Gao N, Yang X, Zang L, 2020. Perylene Diimide-Based Fluorescent and Colorimetric Sensors for Environmental Detection. Sensors, 20(3): 917.
  • Cho H, Chae JB, Kim C, 2019. Cinnamaldehyde-Based Chemosensor for Colorimetric Detection of Cu2+ and Hg2+ in A Near-Perfect Aqueous Solution. Chemistry Select, 4(9): 2795-2801.
  • DeSilva TM., Veglia G, Porcelli F, Prantner AM, Opella SJ, 2002. Selectivity in Heavy Metal‐Binding to Peptides and Proteins. Biopolymers: Original Research on Biomolecules, 64(4): 189-197
  • Erxleben H, Ruzicka J, 2005. Atomic Absorption Spectroscopy for Mercury, Automated by Sequential Injection and Miniaturized in Lab-On-Valve System. Analytical Chemistry, 77(16): 5124-5128.
  • Fernandes Azevedo B, Barros Furieri L, Peçanha FM, Wiggers GA, Frizera Vassallo P, Ronacher Simões M, Stefanon I, 2012. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems. BioMed Research International, 949048.
  • Han FX, Patterson WD, Xia Y, Sridhar BM, Su Y, 2006. Rapid Determination of Mercury in Plant And Soil Samples Using İnductively Coupled Plasma Atomic Emission Spectroscopy, A Comparative Study. Water, Air, and Soil Pollution, 170(1-4): 161-171.
  • Hong M, Chen Y, Zhang Y, Xu D, 2019. A Novel Rhodamine-Based Hg2+ Sensor with A Simple Structure and Fine Performance. Analyst, 144(24): 7351-7358.
  • Hong M, Lu X, Chen Y, Xu D, 2016. A novel rhodamine-based colorimetric and fluorescent sensor for Hg2+in water matrix and living cell. Sensors and Actuators B, 232:28-33.
  • Houston MC, 2011. Role of Mercury Toxicity in Hypertension, Cardiovascular Disease, and Stroke. The Journal of Clinical Hypertension, 13(8): 621-627.
  • Kang JH, Chae JB, Kim C, 2018. A Multi-Functional Chemosensor for Highly Selective Ratiometric Fluorescent Detection of Silver(I) Ion and Dual Turn-On Fluorescent and Colorimetric Detection of Sulfide. Royal Society Open Science, 5: 180293.
  • Kar C, Samanta S, Goswami S, Ramesh A, Das G, 2015. A Single Probe to Sense Al(III) Colorimetrically And Cd(II) by Turn-On Fluorescence in Physiological Conditions and Live Cells, Corroborated by X-Ray Crystallographic and Theoretical Studies. Dalton Transactions, 44(9): 4123-4132.
  • Lee SY, Lee JJ, Bok KH, Kim JA, Kim SY, Kim C, 2016, A colorimetric chemosensor for the sequential recognition of Mercury (II)and iodide in aqueous media. Inorganic Chemistry Communications, 70: 147-152
  • Masindi V, Muedi KL, 2018. Environmental Contamination by Heavy Metals. Heavy Metals, 10: 115-132.
  • Passariello B, Barbaro M, Quaresima S, Casciello A, Marabini A, 1996. Determination of Mercury by Inductively Coupled Plasma—Mass Spectrometry. Microchemical Journal, 54(4): 348-354
  • Peralta-Domínguez D, Rodríguez M, Ramos-Ortíz G, Maldonado JL, Meneses-Nava MA, Barbosa-García O, Farfán N, 2015. A Schiff Base Derivative from Cinnamaldehyde for Colorimetric Detection of Ni2+ in Water. Sensors and Actuators B: Chemical, 207: 511-517.
  • Rubino FM, 2015. Toxicity of Glutathione-Binding Metals: A Review of Targets and Mechanisms. Toxics, 3(1): 20-62.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ, 2012. Heavy Metal Toxicity and the Environment. A. Luch (Ed.), Molecular, Clinical and Environmental Toxicology, Springer Volume: 101, pp. 133-164. Basel-Switzerland
  • Tigreros A, Portilla J, 2020. Recent Progress in Chemosensors Based on Pyrazole Derivatives. RSC Advances, 10(33): 19693-19712.
  • Upadhyay S, Singh A, Sinha R, Omer S, Negi K, 2019. Colorimetric Chemosensors for D-Metal Ions: A Review in the Past, Present and Future Prospect. Journal of Molecular Structure, 1193: 89-102.
  • Xue Z, Liu T, Liu H, 2019. Naked-eye Chromogenic and Fluorogenic Chemosensor for Mercury(II) Ion Based on Substituted Distyryl BODIPY Complex. Dyes and Pigments, 165: 65-70.
There are 29 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Ziya Aydın 0000-0001-8074-9510

Publication Date March 1, 2021
Submission Date September 7, 2020
Acceptance Date November 4, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Aydın, Z. (2021). A Cinnamaldehyde-based Colorimetric Sensor for Hg2+ Detection in Aqueous Solutions. Journal of the Institute of Science and Technology, 11(1), 376-383. https://doi.org/10.21597/jist.791354
AMA Aydın Z. A Cinnamaldehyde-based Colorimetric Sensor for Hg2+ Detection in Aqueous Solutions. J. Inst. Sci. and Tech. March 2021;11(1):376-383. doi:10.21597/jist.791354
Chicago Aydın, Ziya. “A Cinnamaldehyde-Based Colorimetric Sensor for Hg2+ Detection in Aqueous Solutions”. Journal of the Institute of Science and Technology 11, no. 1 (March 2021): 376-83. https://doi.org/10.21597/jist.791354.
EndNote Aydın Z (March 1, 2021) A Cinnamaldehyde-based Colorimetric Sensor for Hg2+ Detection in Aqueous Solutions. Journal of the Institute of Science and Technology 11 1 376–383.
IEEE Z. Aydın, “A Cinnamaldehyde-based Colorimetric Sensor for Hg2+ Detection in Aqueous Solutions”, J. Inst. Sci. and Tech., vol. 11, no. 1, pp. 376–383, 2021, doi: 10.21597/jist.791354.
ISNAD Aydın, Ziya. “A Cinnamaldehyde-Based Colorimetric Sensor for Hg2+ Detection in Aqueous Solutions”. Journal of the Institute of Science and Technology 11/1 (March 2021), 376-383. https://doi.org/10.21597/jist.791354.
JAMA Aydın Z. A Cinnamaldehyde-based Colorimetric Sensor for Hg2+ Detection in Aqueous Solutions. J. Inst. Sci. and Tech. 2021;11:376–383.
MLA Aydın, Ziya. “A Cinnamaldehyde-Based Colorimetric Sensor for Hg2+ Detection in Aqueous Solutions”. Journal of the Institute of Science and Technology, vol. 11, no. 1, 2021, pp. 376-83, doi:10.21597/jist.791354.
Vancouver Aydın Z. A Cinnamaldehyde-based Colorimetric Sensor for Hg2+ Detection in Aqueous Solutions. J. Inst. Sci. and Tech. 2021;11(1):376-83.