Research Article
BibTex RIS Cite

Examining the Function of Meromorphic with Using the Linear Convolution Operator

Year 2021, Volume: 11 Issue: 1, 609 - 616, 01.03.2021
https://doi.org/10.21597/jist.807358

Abstract

In this study, it is mentioned that meromorphic functions are univalent functions that
are analytical everywhere. Complex analytical transformations were investigated by mentioning the
necessary form for f (z) to have meromorphic function. It is a function that satisfies the condition
  0 hz  . For analytic functions of f and g in the D unit disk, ()fz shows the meromorphic
function class with P and subclasses of the P meromorphic analytical function class using the
subordination principle between functions with the help of Hadamard product and linear operators. In
this way proves is provided.

References

  • Alexander JW, 1915. Functions which map the interior of the unit circle upon simple regions, Annals of Math. 17, 15-22.
  • Cho NE, Owa S, 2004. Partial Sums of certain meromorphic functions, J. Inequal. Pure and Appl. Math., 5(2) Art. 30.
  • Cho NE, Kim IH, 2007. Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, Appl. Math. Compu., 187 (1), 115 121.
  • Dziok J, Srivastava HM, 2003. Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (1) ,7-18.
  • Gonchar AA, Havin VP, Nikolski NK, 2001. Complex Analysis I. Springer-Verlag, pp 4, Newyork.Goodman A W, 1983. Univalent functions, Vol. I, Mariner Publ. Co., Tampa, FI..
  • Krantz SG, 1999. Handbook of Complex Variables, , Birkhuser, Boston, MA.
  • Liu J, Owa S, 1998. On certain meromorphic p-valent functions, Taiwanese J. Math. 2(1) , pp. 107-110.
  • MacGregor TH, Thomas HA, 1974/75. Subordination for convex functions of order . J. London Math. Soc. (2) 9, 530-536.
  • Marx A, 1936. Untersuchungen ¸ber schlichte Funktionen, Math. Ann. 107, 40-67.
  • Miller SS, Mocanu PT, 1985. On some classes of first order differential subordinations, Michigan Math. J. , 32 ,185-195.
  • Miller J, 1970. Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc., 25 , 220-228.
  • Mogra L, 1991. Hadamard product of certain meromorphic univalent functions, J. Math. Anal. Appl., 157 ,10-16.
  • Nevanlinna R, 1921. über die konforme Abbildung von Sterngebieten, Ofvers. Finska 58 Vet. Soc. Förh., 53 (A), Nr. 6.
  • Nunokawa M, Ahuja OP, 2001. On meromorphic starlike and convex functions, Indian Pure Appl. Math., 32(7), 1027-1032.
  • Pommerenke Ch, 1963. On meromorphic starlike functions. Pacific J. Math. 13 221-235.
  • Royster WC, 1963. Meromorphic Starlike, Trans. Amer. Math. Soc. Vol. 107, No. 2 , pp. 300-308.
  • Srivastava HM, Owa S, 1986. A certain one parameter additive family of operators defined on analytic functions, Journal of mathematıcal analysıs and applıcatıons 118, 80-87.
  • Strohhacker E, 1933. Beitrage zur Theorie der schlichten Funktionen, Math. Z. 37, 356-380.

Examining the Function of Meromorphic with Using the Linear Convolution Operator

Year 2021, Volume: 11 Issue: 1, 609 - 616, 01.03.2021
https://doi.org/10.21597/jist.807358

Abstract

In this study, it is mentioned that meromorphic functions are univalent functions that
are analytical everywhere. Complex analytical transformations were investigated by mentioning the
necessary form for f (z) to have meromorphic function. It is a function that satisfies the condition
  0 hz  . For analytic functions of f and g in the D unit disk, ()fz shows the meromorphic
function class with P and subclasses of the P meromorphic analytical function class using the
subordination principle between functions with the help of Hadamard product and linear operators. In
this way proves is provided.

References

  • Alexander JW, 1915. Functions which map the interior of the unit circle upon simple regions, Annals of Math. 17, 15-22.
  • Cho NE, Owa S, 2004. Partial Sums of certain meromorphic functions, J. Inequal. Pure and Appl. Math., 5(2) Art. 30.
  • Cho NE, Kim IH, 2007. Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, Appl. Math. Compu., 187 (1), 115 121.
  • Dziok J, Srivastava HM, 2003. Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (1) ,7-18.
  • Gonchar AA, Havin VP, Nikolski NK, 2001. Complex Analysis I. Springer-Verlag, pp 4, Newyork.Goodman A W, 1983. Univalent functions, Vol. I, Mariner Publ. Co., Tampa, FI..
  • Krantz SG, 1999. Handbook of Complex Variables, , Birkhuser, Boston, MA.
  • Liu J, Owa S, 1998. On certain meromorphic p-valent functions, Taiwanese J. Math. 2(1) , pp. 107-110.
  • MacGregor TH, Thomas HA, 1974/75. Subordination for convex functions of order . J. London Math. Soc. (2) 9, 530-536.
  • Marx A, 1936. Untersuchungen ¸ber schlichte Funktionen, Math. Ann. 107, 40-67.
  • Miller SS, Mocanu PT, 1985. On some classes of first order differential subordinations, Michigan Math. J. , 32 ,185-195.
  • Miller J, 1970. Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc., 25 , 220-228.
  • Mogra L, 1991. Hadamard product of certain meromorphic univalent functions, J. Math. Anal. Appl., 157 ,10-16.
  • Nevanlinna R, 1921. über die konforme Abbildung von Sterngebieten, Ofvers. Finska 58 Vet. Soc. Förh., 53 (A), Nr. 6.
  • Nunokawa M, Ahuja OP, 2001. On meromorphic starlike and convex functions, Indian Pure Appl. Math., 32(7), 1027-1032.
  • Pommerenke Ch, 1963. On meromorphic starlike functions. Pacific J. Math. 13 221-235.
  • Royster WC, 1963. Meromorphic Starlike, Trans. Amer. Math. Soc. Vol. 107, No. 2 , pp. 300-308.
  • Srivastava HM, Owa S, 1986. A certain one parameter additive family of operators defined on analytic functions, Journal of mathematıcal analysıs and applıcatıons 118, 80-87.
  • Strohhacker E, 1933. Beitrage zur Theorie der schlichten Funktionen, Math. Z. 37, 356-380.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Matematik / Mathematics
Authors

Hasan Şahin 0000-0002-5227-5300

Publication Date March 1, 2021
Submission Date October 8, 2020
Acceptance Date December 14, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Şahin, H. (2021). Examining the Function of Meromorphic with Using the Linear Convolution Operator. Journal of the Institute of Science and Technology, 11(1), 609-616. https://doi.org/10.21597/jist.807358
AMA Şahin H. Examining the Function of Meromorphic with Using the Linear Convolution Operator. J. Inst. Sci. and Tech. March 2021;11(1):609-616. doi:10.21597/jist.807358
Chicago Şahin, Hasan. “Examining the Function of Meromorphic With Using the Linear Convolution Operator”. Journal of the Institute of Science and Technology 11, no. 1 (March 2021): 609-16. https://doi.org/10.21597/jist.807358.
EndNote Şahin H (March 1, 2021) Examining the Function of Meromorphic with Using the Linear Convolution Operator. Journal of the Institute of Science and Technology 11 1 609–616.
IEEE H. Şahin, “Examining the Function of Meromorphic with Using the Linear Convolution Operator”, J. Inst. Sci. and Tech., vol. 11, no. 1, pp. 609–616, 2021, doi: 10.21597/jist.807358.
ISNAD Şahin, Hasan. “Examining the Function of Meromorphic With Using the Linear Convolution Operator”. Journal of the Institute of Science and Technology 11/1 (March 2021), 609-616. https://doi.org/10.21597/jist.807358.
JAMA Şahin H. Examining the Function of Meromorphic with Using the Linear Convolution Operator. J. Inst. Sci. and Tech. 2021;11:609–616.
MLA Şahin, Hasan. “Examining the Function of Meromorphic With Using the Linear Convolution Operator”. Journal of the Institute of Science and Technology, vol. 11, no. 1, 2021, pp. 609-16, doi:10.21597/jist.807358.
Vancouver Şahin H. Examining the Function of Meromorphic with Using the Linear Convolution Operator. J. Inst. Sci. and Tech. 2021;11(1):609-16.