Research Article
BibTex RIS Cite

Grafen Katkılı Nişasta Filmlerinin Dielektrik Özelliklerinin Geniş Frekans Aralığında İncelenmesi

Year 2021, Volume: 11 Issue: 2, 1393 - 1401, 01.06.2021
https://doi.org/10.21597/jist.830255

Abstract

Bu çalışmada, gliserol ile plastikleştirilmiş patates nişastası (PN) filmlerine, farklı oranlarda (% 0.5, 1, 2) grafen (G) eklenerek döküm yöntemi ile hazırlanmış filmlerin dielektrik sabiti, dielektrik kayıp ve kayıp tanjantı gibi bazı dielektrik özelliklerinin frekansla değişimleri incelendi. PN’nın saf hali ve G ile hazırlanmış kompozitlerinin (PNG0.5, PNG1 ve PNG2) dielektrik sabiti (έ), dielektrik kayıp faktörü (ε՛՛) ve kayıp tanjantı (tanδ) değerleri oda sıcaklığında frekansın bir fonksiyonu olarak (100 Hz ile 10 kHz arasında) empedans analizör cihazı ile belirlendi. Nişastanın 1 kHz sabit frekans ve oda sıcaklığındaki dielektrik sabiti, dielektrik kayıp ve kayıp tanjantı değerleri sırasıyla 9.20, 4.45 ve 0.48 olarak bulundu. Ayrıca, farklı oranlarda G miktarının (ağırlıkça %0.5, %1 ve %2) filmlerin dielektrik özellikleri üzerindeki etkisi araştırıldı. G konsantrasyonu arttıkça dielektrik sabiti, dielektrik kayıp ve kayıp tanjantı değerlerinde, saf nişastaya göre önemli artış olduğu gözlendi.

References

  • Ahmad MW, Dey B, Sarkhel G, Bag DS, Choudhury A, 2019. Exfoliated Graphene Reinforced Polybenzimidazole Nanocomposites With High Dielectric Permittivity At Low Percolation Threshold. Journal of Molecular Structure, 1177: 491-498.
  • Ávila‐Orta CA, Soriano Corral F, Fonseca‐Florido HA, Estrada Aguilar FI, Solís Rosales SG, Mata Padilla JM, Morones PG, Tavizon SF, Hernández‐Hernández E, 2018. Starch‐Graphene Oxide Bionanocomposites Prepared Through Melt Mixing. Journal of Applied Polymer Science, 135(12): 46037.
  • Biryan F, Demirelli K, Torğut G, Pıhtılı G, 2017. Synthesis, Thermal Degradation And Dielectric Properties of Poly [2-Hydroxy, 3-(1-Naphthyloxy) Propyl Methacrylate]. Polymer Bulletin, 74(2): 583-602.
  • Calame JP, 2006. Finite Difference Simulations of Permittivity And Electric Field Statistics in Ceramic-Polymer Composites for Capacitor Applications. Journal of Applied Physics, 99(8): 084101.
  • Canbulat N, (2019). Pres Kalıplama Pestilinin Mekanik ve Elektrik Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, 2019.
  • Chen J, Long Z, Wang S, Meng Y, Zhang G, Nie S, 2019. Biodegradable Blends of Graphene Quantum Dots and Thermoplastic Starch with Solid-State Photoluminescent and Conductive Properties. International Journal of Biological Macromolecules, 139: 367-376.
  • Delipınar Didem, 2013. Probertit, Elektrokoagülasyon Termal Atık Ve Elektrokoagülasyon Bor Atığın Dielektrik Özelliklerinin Empedans Spektroskopisi Yöntemi İle İncelenmesi. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Fizik Anabilim Dalı, İstanbul
  • Everard CD, Fagan CC, O’donnell CP, O’callaghan DJ, Lyng JG, 2006. Dielectric Properties of Process Cheese from 0.3 to 3 GHz. Journal of Food Engineering, 75(3): 415-422.
  • Figueiro SD, Macedo AA. M, Melo MRS, Freitas ALP, Moreira RA, De Oliveira RS, Goes JC, Sombra ASB, 2006. On The Dielectric Behaviour of Collagen–Algal Sulfated Polysaccharide Blends: Effect of Glutaraldehyde Crosslinking. Biophysical Chemistry, 120(2): 154-159.
  • George S, Varughese KT, Thomas S, 1999. Dielectric Properties of İsotactic Polypropylene/Nitrile Rubber Blends: Effects of Blend Ratio, Filler Addition, and Dynamic Vulcanization. Journal of Applied Polymer Science, 73(2): 255-270.
  • Goyal RK, Jagadale PA, Mulik UP, 2009. Thermal, Mechanical, and Dielectric Properties Of Polystyrene/Expanded Graphite Nanocomposites. Journal of Applied Polymer Science, 111(4): 2071-2077.
  • Gürler N, Torğut G, 2020. Graphene‐Reinforced Potato Starch Composite Films: Improvement of Mechanical, Barrier and Electrical Properties. Polymer Composites.
  • İyibakanlar, G, 2003. Polimerlerin Dielektrik Özelliklerinin Sıcaklık ve Frekansla Değişimlerinin İncelenmesi. Doktora Tezi, Fen Bilimleri Enstitüsü Sivil Havacılık Anabilim Dalı, Eskişehir.
  • İyibakanlar G, Oktay A, 2007. Bazı Polimerlerin Dielektrik Özelliklerinin Frekansla Değişimlerinin İncelenmesi. Journal of Aeronautics & Space Technologies/Havacilik ve Uzay Teknolojileri Dergisi, 3(1).
  • Karasu S, Öztürk A, Şağban HM, Özmen ÖT, 2016. Au/P3HT:PCBM/n-Si Schottky Bariyer Diyotlarda PCBM Konsantrasyonunun Kapasitans-Voltaj (C-V) ve İletkenlik-Voltaj (G/w-V) Karakteristiklerine Etkisi ve Dielektrik Özelliklerin İncelemesi, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4.
  • Karimi B, Ramezanzadeh B, 2017. A Comparative Study on The Effects of Ultrathin Luminescent Graphene Oxide Quantum Dot (GOQD) and Graphene Oxide (GO) Nanosheets on The İnterfacial İnteractions and Mechanical Properties of an Epoxy Composite. Journal of Colloid And Interface Science, 493, 62-76.
  • Kim H, Abdala AA, Macosko CW, 2010. Graphene/Polymer Nanocomposites. Macromolecules, 43(16): 6515-6530.
  • Koran K, Özen F, Torğut G, Pıhtılı G, Çil E, Görgülü AO, Arslan M, 2014. Synthesis, Characterization and Dielectric Properties of Phosphazenes Containing Chalcones. Polyhedron, 79: 213-220.
  • Koran K, 2018. 2,2-(3-(Sübstitüe-florofenil)-1-(4-oksifenil)prop-2-en-1-one)-4,4,6,6- bis[spiro(2',2"-dioksi-1',1"-bifenilil]SiklotrifosfazenlerinDielektrik ve Termal Özellikleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18: 458-467.
  • Lai M, Yu S, Sun R, 2014. Ceramic/Polymer Composites with Enhanced Permittivity and Low Dielectric Loss Through Grafting Modification of Polymer Matrix By Polyethylene Glycol. Materials Letters, 122: 45-48.
  • Li B, Zhong WH, 2011. Review on Polymer/Graphite Nanoplatelet Nanocomposites. Journal of Materials Science, 46(17): 5595-5614.
  • Li W, Song Z, Qian J, Tan Z, Chu H, Wu X, Nie W, Ran X, 2019. Enhancing Conjugation Degree and İnterfacial İnteractions to Enhance Dielectric Properties of Noncovalent Functionalized Graphene/Poly (Vinylidene Fluoride) Composites. Carbon, 141: 728-738.
  • Liu J, Cui L, Losic D, 2013. Graphene and Graphene Oxide as New Nanocarriers for Drug Delivery Applications. Acta Biomaterialia, 9(12): 9243-9257.
  • Lökçü, E, 2013. Spinel Mikrodalga Dielektrik Seramiklerinin Polimerik Jel Yöntemi İle Üretimi Ve Karakterizasyonu. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Metalurji ve Malzeme Mühendisliği Anabilim Dalı, İstanbul.
  • Nair AB, Kurian P and Joseph R, 2013. European Polymer Journal. 49: 247.
  • Pandey K, Dwivedi MM, Singh M, Agrawal SL, 2010. Studies of Dielectric Relaxation and Ac Conductivity in [(100− X) PEO+ Xnh 4 SCN]: Al-Zn Ferrite Nano Composite Polymer Electrolyte. Journal of Polymer Research, 17(1): 127.
  • Panwar V, Park JO, Park SH, Kumar S, Mehra RM, 2010. Electrical, Dielectric, and Electromagnetic Shielding Properties of Polypropylene‐Graphite Composites. Journal of Applied Polymer Science, 115(3): 1306-1314.
  • Paszkiewicz S, Szymczyk A, Pilawka R, Przybyszewski B, Czulak A, RosŁaniec Z, 2017. Improved Thermal Conductivity of Poly (trimethylene terephthalate‐block‐poly (tetramethylene oxide) Based Nanocomposites Containing Hybrid Single‐Walled Carbon Nanotubes/Graphene Nanoplatelets Fillers. Advances in Polymer Technology, 36(2): 236-242.
  • Pihtili G, Torğut G, Biryan F, 2020. Electrical Properties of Two-Armed Poly (Ɛ-CL-Co-BMA) Composites Filled with Bentonite. Journal of Polymer Research, 27: 156.
  • Sari MG, Shamshiri M., Ramezanzadeh B, 2017. Fabricating an Epoxy Composite Coating With Enhanced Corrosion Resistance Through Impregnation of Functionalized Graphene Oxide-Co-Montmorillonite Nanoplatelet. Corrosion Science, 129: 38-53.
  • Srivastava NK, Mehra RM, 2008. Study of Structural, Electrical, and Dielectric Properties of Polystyrene/Foliated Graphite Nanocomposite Developed via In Situ Polymerization. Journal of Applied Polymer Science, 109(6): 3991-3999.
  • Symth CP, 1955. Dielectric Behaviour and Structure. McGraw-Hill, New York, 52-61: 202-215.
  • Tantis I, Psarras G. C, Tasis D, 2012. Functionalized Graphene-Poly (Vinyl Alcohol) Nanocomposites: Physical and Dielectric Properties. Express Polym Lett 6 (4): 283–292.
  • Torgut G, Demirelli K, 2016. Block Copolymerization of Methylmethacrylate via ATRP Method Using a Macroinitiator Produced By Ring Opening Polymerization: Characterization, Dielectric Properties, and a Kinetic Investigation. Journal of Macromolecular Science, Part A, 53(11): 669-676.
  • Torğut G, 2019. Fabrication, Characterization of Poly (MA-Co-NIPA)-Graphene Composites and Optimization The Dielectric Properties Using The Response Surface Method (RSM). Polymer Testing, 76: 312-319.
  • Torğut G, Biryan F, Demirelli K, 2019. Effect of Graphite Particle Fillers on Dielectric and Conductivity Properties of Poly (NIPAM-Co-HEMA). Bulletin of Materials Science, 42(5): 244.
  • Usman A, Hussain Z, Riaz A, Khan AN, 2016. Enhanced Mechanical, Thermal and Antimicrobial Properties of Poly (Vinyl Alcohol)/Graphene Oxide/Starch/Silver Nanocomposites Films. Carbohydrate Polymers, 153: 592-599.
  • Wang X, Yang H, Song L, Hu Y, Xing W, Lu H, 2011. Morphology, Mechanical and Thermal Properties of Graphene-Reinforced Poly (Butylene Succinate) Nanocomposites. Composites Science and Technology, 72(1): 1-6.
  • Wu Z, Huang Y, Xiao L, Lin D, Yang Y, Wang H, Yang H, Wu D, Chen H, Qin W, 2019. Physical Properties and Structural Characterization of Starch/Polyvinyl Alcohol/Graphene Oxide Composite Films. International Journal of Biological Macromolecules, 123: 569-575.
  • Xie Y, Liu Y, Zhao Y, Tsang YH, Lau SP, Huang H, Chai Y, 2014. Stretchable All-Solid-State Supercapacitor with Wavy Shaped Polyaniline/Graphene Electrode. Journal of Materials Chemistry A, 2(24): 9142-9149.
  • Yarahmadi E, Didehban K, Sari, MG, Saeb MR, Shabanian M, Aryanasab F, Zarrintaj P, Paran, S MR, Mozafari M, Rallini M, Puglia D, 2018. Development and Curing Potential of Epoxy/Starch-Functionalized Graphene Oxide Nanocomposite Coatings. Progress in Organic Coatings, 119: 194-202.
  • Yuxing R, David CL, 2008. Properties and Microstructures of Lowtemperature Processable Ultralow-Dielectric Porous Polyimide Films. Journal of Electronic Materials, 37: 21-28.
  • Zare Y, Rhee KY, 2017. Development of a Model for Electrical Conductivity of Polymer/Graphene Nanocomposites Assuming İnterphase and Tunneling Regions in Conductive Networks. Industrial & Engineering Chemistry Research, 56(32): 9107-9115.
  • Zhang XJ, Wang GS, Wei YZ, Guo L, Cao MS, 2013. Polymer-Composite with High Dielectric Constant and Enhanced Absorption Properties Based on Graphene–Cus Nanocomposites and Polyvinylidene Fluoride. Journal of Materials Chemistry A, 1(39): 12115-12122.
  • Zheng P, Ma T, Ma X, 2013. Fabrication and Properties of Starch-Grafted Graphene Nanosheet/Plasticized-Starch Composites. Industrial & Engineering Chemistry Research, 52(39): 14201-14207.

Investigation of Dielectric Properties of Graphene Filled Starch Films in Wide Frequency Range

Year 2021, Volume: 11 Issue: 2, 1393 - 1401, 01.06.2021
https://doi.org/10.21597/jist.830255

Abstract

In this study, the change of some dielectric properties such as dielectric constant, dielectric loss and loss tangent of films prepared by casting method by adding graphene (G) in different proportions (% wt 0.5, 1, 2) to potato starch (PS) films plasticized with glycerol were investigated. Dielectric constant (έ), dielectric loss (ε՛՛) and loss tangent (tanδ) values of pure PS and its composites prepared with G (PSG0.5, PSG1 and PSG2) were determined by impedance analyzer as a function of frequency (between 100 Hz and 10 kHz) at room temperature. The dielectric constant, dielectric loss factor and loss tangent values of the starch were found to be 9.20, 4.45 ve 0.48 at 1 kHz constant frequency and at room temperature. In addition, the effect of different proportions of G (0.5%, 1% and 2% by weight) on the dielectric properties of films were investigated. (0.5%, 1% and 2% by weight) of the starch on the dielectric properties was investigated. It was observed that as the G concentration increased, the dielectric constant, dielectric loss and loss tangent values significantly increased compared to the pure starch.

References

  • Ahmad MW, Dey B, Sarkhel G, Bag DS, Choudhury A, 2019. Exfoliated Graphene Reinforced Polybenzimidazole Nanocomposites With High Dielectric Permittivity At Low Percolation Threshold. Journal of Molecular Structure, 1177: 491-498.
  • Ávila‐Orta CA, Soriano Corral F, Fonseca‐Florido HA, Estrada Aguilar FI, Solís Rosales SG, Mata Padilla JM, Morones PG, Tavizon SF, Hernández‐Hernández E, 2018. Starch‐Graphene Oxide Bionanocomposites Prepared Through Melt Mixing. Journal of Applied Polymer Science, 135(12): 46037.
  • Biryan F, Demirelli K, Torğut G, Pıhtılı G, 2017. Synthesis, Thermal Degradation And Dielectric Properties of Poly [2-Hydroxy, 3-(1-Naphthyloxy) Propyl Methacrylate]. Polymer Bulletin, 74(2): 583-602.
  • Calame JP, 2006. Finite Difference Simulations of Permittivity And Electric Field Statistics in Ceramic-Polymer Composites for Capacitor Applications. Journal of Applied Physics, 99(8): 084101.
  • Canbulat N, (2019). Pres Kalıplama Pestilinin Mekanik ve Elektrik Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, 2019.
  • Chen J, Long Z, Wang S, Meng Y, Zhang G, Nie S, 2019. Biodegradable Blends of Graphene Quantum Dots and Thermoplastic Starch with Solid-State Photoluminescent and Conductive Properties. International Journal of Biological Macromolecules, 139: 367-376.
  • Delipınar Didem, 2013. Probertit, Elektrokoagülasyon Termal Atık Ve Elektrokoagülasyon Bor Atığın Dielektrik Özelliklerinin Empedans Spektroskopisi Yöntemi İle İncelenmesi. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Fizik Anabilim Dalı, İstanbul
  • Everard CD, Fagan CC, O’donnell CP, O’callaghan DJ, Lyng JG, 2006. Dielectric Properties of Process Cheese from 0.3 to 3 GHz. Journal of Food Engineering, 75(3): 415-422.
  • Figueiro SD, Macedo AA. M, Melo MRS, Freitas ALP, Moreira RA, De Oliveira RS, Goes JC, Sombra ASB, 2006. On The Dielectric Behaviour of Collagen–Algal Sulfated Polysaccharide Blends: Effect of Glutaraldehyde Crosslinking. Biophysical Chemistry, 120(2): 154-159.
  • George S, Varughese KT, Thomas S, 1999. Dielectric Properties of İsotactic Polypropylene/Nitrile Rubber Blends: Effects of Blend Ratio, Filler Addition, and Dynamic Vulcanization. Journal of Applied Polymer Science, 73(2): 255-270.
  • Goyal RK, Jagadale PA, Mulik UP, 2009. Thermal, Mechanical, and Dielectric Properties Of Polystyrene/Expanded Graphite Nanocomposites. Journal of Applied Polymer Science, 111(4): 2071-2077.
  • Gürler N, Torğut G, 2020. Graphene‐Reinforced Potato Starch Composite Films: Improvement of Mechanical, Barrier and Electrical Properties. Polymer Composites.
  • İyibakanlar, G, 2003. Polimerlerin Dielektrik Özelliklerinin Sıcaklık ve Frekansla Değişimlerinin İncelenmesi. Doktora Tezi, Fen Bilimleri Enstitüsü Sivil Havacılık Anabilim Dalı, Eskişehir.
  • İyibakanlar G, Oktay A, 2007. Bazı Polimerlerin Dielektrik Özelliklerinin Frekansla Değişimlerinin İncelenmesi. Journal of Aeronautics & Space Technologies/Havacilik ve Uzay Teknolojileri Dergisi, 3(1).
  • Karasu S, Öztürk A, Şağban HM, Özmen ÖT, 2016. Au/P3HT:PCBM/n-Si Schottky Bariyer Diyotlarda PCBM Konsantrasyonunun Kapasitans-Voltaj (C-V) ve İletkenlik-Voltaj (G/w-V) Karakteristiklerine Etkisi ve Dielektrik Özelliklerin İncelemesi, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4.
  • Karimi B, Ramezanzadeh B, 2017. A Comparative Study on The Effects of Ultrathin Luminescent Graphene Oxide Quantum Dot (GOQD) and Graphene Oxide (GO) Nanosheets on The İnterfacial İnteractions and Mechanical Properties of an Epoxy Composite. Journal of Colloid And Interface Science, 493, 62-76.
  • Kim H, Abdala AA, Macosko CW, 2010. Graphene/Polymer Nanocomposites. Macromolecules, 43(16): 6515-6530.
  • Koran K, Özen F, Torğut G, Pıhtılı G, Çil E, Görgülü AO, Arslan M, 2014. Synthesis, Characterization and Dielectric Properties of Phosphazenes Containing Chalcones. Polyhedron, 79: 213-220.
  • Koran K, 2018. 2,2-(3-(Sübstitüe-florofenil)-1-(4-oksifenil)prop-2-en-1-one)-4,4,6,6- bis[spiro(2',2"-dioksi-1',1"-bifenilil]SiklotrifosfazenlerinDielektrik ve Termal Özellikleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18: 458-467.
  • Lai M, Yu S, Sun R, 2014. Ceramic/Polymer Composites with Enhanced Permittivity and Low Dielectric Loss Through Grafting Modification of Polymer Matrix By Polyethylene Glycol. Materials Letters, 122: 45-48.
  • Li B, Zhong WH, 2011. Review on Polymer/Graphite Nanoplatelet Nanocomposites. Journal of Materials Science, 46(17): 5595-5614.
  • Li W, Song Z, Qian J, Tan Z, Chu H, Wu X, Nie W, Ran X, 2019. Enhancing Conjugation Degree and İnterfacial İnteractions to Enhance Dielectric Properties of Noncovalent Functionalized Graphene/Poly (Vinylidene Fluoride) Composites. Carbon, 141: 728-738.
  • Liu J, Cui L, Losic D, 2013. Graphene and Graphene Oxide as New Nanocarriers for Drug Delivery Applications. Acta Biomaterialia, 9(12): 9243-9257.
  • Lökçü, E, 2013. Spinel Mikrodalga Dielektrik Seramiklerinin Polimerik Jel Yöntemi İle Üretimi Ve Karakterizasyonu. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Metalurji ve Malzeme Mühendisliği Anabilim Dalı, İstanbul.
  • Nair AB, Kurian P and Joseph R, 2013. European Polymer Journal. 49: 247.
  • Pandey K, Dwivedi MM, Singh M, Agrawal SL, 2010. Studies of Dielectric Relaxation and Ac Conductivity in [(100− X) PEO+ Xnh 4 SCN]: Al-Zn Ferrite Nano Composite Polymer Electrolyte. Journal of Polymer Research, 17(1): 127.
  • Panwar V, Park JO, Park SH, Kumar S, Mehra RM, 2010. Electrical, Dielectric, and Electromagnetic Shielding Properties of Polypropylene‐Graphite Composites. Journal of Applied Polymer Science, 115(3): 1306-1314.
  • Paszkiewicz S, Szymczyk A, Pilawka R, Przybyszewski B, Czulak A, RosŁaniec Z, 2017. Improved Thermal Conductivity of Poly (trimethylene terephthalate‐block‐poly (tetramethylene oxide) Based Nanocomposites Containing Hybrid Single‐Walled Carbon Nanotubes/Graphene Nanoplatelets Fillers. Advances in Polymer Technology, 36(2): 236-242.
  • Pihtili G, Torğut G, Biryan F, 2020. Electrical Properties of Two-Armed Poly (Ɛ-CL-Co-BMA) Composites Filled with Bentonite. Journal of Polymer Research, 27: 156.
  • Sari MG, Shamshiri M., Ramezanzadeh B, 2017. Fabricating an Epoxy Composite Coating With Enhanced Corrosion Resistance Through Impregnation of Functionalized Graphene Oxide-Co-Montmorillonite Nanoplatelet. Corrosion Science, 129: 38-53.
  • Srivastava NK, Mehra RM, 2008. Study of Structural, Electrical, and Dielectric Properties of Polystyrene/Foliated Graphite Nanocomposite Developed via In Situ Polymerization. Journal of Applied Polymer Science, 109(6): 3991-3999.
  • Symth CP, 1955. Dielectric Behaviour and Structure. McGraw-Hill, New York, 52-61: 202-215.
  • Tantis I, Psarras G. C, Tasis D, 2012. Functionalized Graphene-Poly (Vinyl Alcohol) Nanocomposites: Physical and Dielectric Properties. Express Polym Lett 6 (4): 283–292.
  • Torgut G, Demirelli K, 2016. Block Copolymerization of Methylmethacrylate via ATRP Method Using a Macroinitiator Produced By Ring Opening Polymerization: Characterization, Dielectric Properties, and a Kinetic Investigation. Journal of Macromolecular Science, Part A, 53(11): 669-676.
  • Torğut G, 2019. Fabrication, Characterization of Poly (MA-Co-NIPA)-Graphene Composites and Optimization The Dielectric Properties Using The Response Surface Method (RSM). Polymer Testing, 76: 312-319.
  • Torğut G, Biryan F, Demirelli K, 2019. Effect of Graphite Particle Fillers on Dielectric and Conductivity Properties of Poly (NIPAM-Co-HEMA). Bulletin of Materials Science, 42(5): 244.
  • Usman A, Hussain Z, Riaz A, Khan AN, 2016. Enhanced Mechanical, Thermal and Antimicrobial Properties of Poly (Vinyl Alcohol)/Graphene Oxide/Starch/Silver Nanocomposites Films. Carbohydrate Polymers, 153: 592-599.
  • Wang X, Yang H, Song L, Hu Y, Xing W, Lu H, 2011. Morphology, Mechanical and Thermal Properties of Graphene-Reinforced Poly (Butylene Succinate) Nanocomposites. Composites Science and Technology, 72(1): 1-6.
  • Wu Z, Huang Y, Xiao L, Lin D, Yang Y, Wang H, Yang H, Wu D, Chen H, Qin W, 2019. Physical Properties and Structural Characterization of Starch/Polyvinyl Alcohol/Graphene Oxide Composite Films. International Journal of Biological Macromolecules, 123: 569-575.
  • Xie Y, Liu Y, Zhao Y, Tsang YH, Lau SP, Huang H, Chai Y, 2014. Stretchable All-Solid-State Supercapacitor with Wavy Shaped Polyaniline/Graphene Electrode. Journal of Materials Chemistry A, 2(24): 9142-9149.
  • Yarahmadi E, Didehban K, Sari, MG, Saeb MR, Shabanian M, Aryanasab F, Zarrintaj P, Paran, S MR, Mozafari M, Rallini M, Puglia D, 2018. Development and Curing Potential of Epoxy/Starch-Functionalized Graphene Oxide Nanocomposite Coatings. Progress in Organic Coatings, 119: 194-202.
  • Yuxing R, David CL, 2008. Properties and Microstructures of Lowtemperature Processable Ultralow-Dielectric Porous Polyimide Films. Journal of Electronic Materials, 37: 21-28.
  • Zare Y, Rhee KY, 2017. Development of a Model for Electrical Conductivity of Polymer/Graphene Nanocomposites Assuming İnterphase and Tunneling Regions in Conductive Networks. Industrial & Engineering Chemistry Research, 56(32): 9107-9115.
  • Zhang XJ, Wang GS, Wei YZ, Guo L, Cao MS, 2013. Polymer-Composite with High Dielectric Constant and Enhanced Absorption Properties Based on Graphene–Cus Nanocomposites and Polyvinylidene Fluoride. Journal of Materials Chemistry A, 1(39): 12115-12122.
  • Zheng P, Ma T, Ma X, 2013. Fabrication and Properties of Starch-Grafted Graphene Nanosheet/Plasticized-Starch Composites. Industrial & Engineering Chemistry Research, 52(39): 14201-14207.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Gülben Torğut 0000-0003-1730-1152

Nedim Gürler 0000-0001-5637-8262

Publication Date June 1, 2021
Submission Date November 24, 2020
Acceptance Date January 3, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Torğut, G., & Gürler, N. (2021). Grafen Katkılı Nişasta Filmlerinin Dielektrik Özelliklerinin Geniş Frekans Aralığında İncelenmesi. Journal of the Institute of Science and Technology, 11(2), 1393-1401. https://doi.org/10.21597/jist.830255
AMA Torğut G, Gürler N. Grafen Katkılı Nişasta Filmlerinin Dielektrik Özelliklerinin Geniş Frekans Aralığında İncelenmesi. J. Inst. Sci. and Tech. June 2021;11(2):1393-1401. doi:10.21597/jist.830255
Chicago Torğut, Gülben, and Nedim Gürler. “Grafen Katkılı Nişasta Filmlerinin Dielektrik Özelliklerinin Geniş Frekans Aralığında İncelenmesi”. Journal of the Institute of Science and Technology 11, no. 2 (June 2021): 1393-1401. https://doi.org/10.21597/jist.830255.
EndNote Torğut G, Gürler N (June 1, 2021) Grafen Katkılı Nişasta Filmlerinin Dielektrik Özelliklerinin Geniş Frekans Aralığında İncelenmesi. Journal of the Institute of Science and Technology 11 2 1393–1401.
IEEE G. Torğut and N. Gürler, “Grafen Katkılı Nişasta Filmlerinin Dielektrik Özelliklerinin Geniş Frekans Aralığında İncelenmesi”, J. Inst. Sci. and Tech., vol. 11, no. 2, pp. 1393–1401, 2021, doi: 10.21597/jist.830255.
ISNAD Torğut, Gülben - Gürler, Nedim. “Grafen Katkılı Nişasta Filmlerinin Dielektrik Özelliklerinin Geniş Frekans Aralığında İncelenmesi”. Journal of the Institute of Science and Technology 11/2 (June 2021), 1393-1401. https://doi.org/10.21597/jist.830255.
JAMA Torğut G, Gürler N. Grafen Katkılı Nişasta Filmlerinin Dielektrik Özelliklerinin Geniş Frekans Aralığında İncelenmesi. J. Inst. Sci. and Tech. 2021;11:1393–1401.
MLA Torğut, Gülben and Nedim Gürler. “Grafen Katkılı Nişasta Filmlerinin Dielektrik Özelliklerinin Geniş Frekans Aralığında İncelenmesi”. Journal of the Institute of Science and Technology, vol. 11, no. 2, 2021, pp. 1393-01, doi:10.21597/jist.830255.
Vancouver Torğut G, Gürler N. Grafen Katkılı Nişasta Filmlerinin Dielektrik Özelliklerinin Geniş Frekans Aralığında İncelenmesi. J. Inst. Sci. and Tech. 2021;11(2):1393-401.