Year 2021, Volume 11 , Issue 2, Pages 1408 - 1419 2021-06-01

Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri
Syntheses of Potential Bioactive Some New Pyrazole Derivatives Having Benzenesulfonamide Moiety

Çetin BAYRAK [1]


Bu makalede, 4-metil-2,3-difenil-2,3-dihidro-1H-pirazol ve 4-(4-metil-5-fenil-2,5-dihidro-1H-pirazol-1-il)benzensulfonamid türevi bileşikler α,β-doymamış aldehit bileşiklerinin fenilhidrazin hidrat veya 4-sülfamoil fenil hidrazin hidrojen klorür ile tepkimelerinden elde edildi. Bu reaksiyonların takibinde bileşiklerin aromatlaştırma tepkimeleri 2,3-dikloro-5,6-disiyano-1,4-benzokinon (DDQ) ile yapıldı. Son olarak bileşik 4-(4-metil-5-(3,4,5-trimetoksifenil)-1H-pirazol-1-il)benzensulfonamidin SO2NH2 grubu Et3N varlığında propiyonik anhidrit ile SO2NHCOEt grubuna dönüştürüldü. Sentezlenen bileşiklerin yapıları 1H-NMR, 13C-NMR ve HRMS analiz yöntemleri ile karakterize edildi.
In this article, 4-methyl-2,3-diphenyl-2,3-dihydro-1H-pyrazole and 4-(4-methyl-5-phenyl-2,5-dihydro-1H-pyrazole-1-yl) benzenesulfonamide derivatives were synthesized from the reactions of α, β-unsaturated aldehydes with phenylhydrazine hydrate and 4-sulfamoylphenylhydrazine hydrogen chloride, respectively. Following these reactions, aromatization of the compounds were achieved with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Finally, SO2NH2 group of compound 4-(4-methyl-5-(3,4,5-trimethoxyphenyl) -1H-pyrazol-1-yl) benzenesulfonamidine was converted to the SO2NHCOEt group with propionic anhydride in the presence of Et3N. The structures of the synthesized compounds were characterized by 1H-NMR, 13C-NMR, and HRMS analysis.
  • Abbate F, Casini A, Owa T, Scozzafava A, Supuran CT, 2004. Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorganic & Medicinal Chemistry Letters, 14 (1): 217-223.
  • Abdel-Aziz HA, El-Zahabi HS, Dawood KM, 2010. Microwave-assisted synthesis and in-vitro anti-tumor activity of 1,3,4-triaryl-5-N-arylpyrazole-carboxamides. European Journal of Medicinal Chemistry, 45 (6): 2427-32.
  • Bayrak C, Senol H, Sıtbası S, Menzek A, Sahin E, 2018. Synthesis and rearrangement reactions of 1,4-dihydrospiro[1,4-methanonaphthalene-9,1′-cyclopropane] derivatives. Tetrahedron, 74(40): 5839-5849.
  • Blobaum AL, Marnett LJ, 2007. Structural and functional basis of cyclooxygenase inhibition. Journal of Medicinal Chemistry, 50 (7): 1425-1441.
  • Brown JR, DuBois RN, 2005. COX-2: A molecular target for colorectal cancer prevention. Journal of Clinical Oncology, 23 (12): 2840-2855.
  • Chen L, Teng W, Geng XL, Zhu YF, Guan YH, Fan X, 2017. Facile synthesis of indene and fluorene derivatives through AlCl3-catalyzed cyclization of in situ formed iminium ions. Applied Organometallic Chemistry, 31 (12): e3863.
  • Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, Dubois RN, 1994. Up-Regulation of Cyclooxygenase-2 Gene-Expression in Human Colorectal Adenomas and Adenocarcinomas. Gastroenterology, 107 (4): 1183-1188.
  • Faidallah HM, Al-Saadi MS, Rostom SAF, Fahmy HTY, 2007. Synthesis of some sulfonamides, disubstituted sulfonylureas or thioureas and some structurally related variants. A class of promising antitumor agents. Medicinal Chemistry Research, 16 (6): 300-318.
  • Gao M, Wang M, Miller KD, Hutchins GD, Zheng QH, 2009. Synthesis of carbon-11 labeled celecoxib derivatives as new candidate PET radioligands for imaging of inflammation. Appl Radiat Isot, 67 (11): 2019-24.
  • Gogoi P, Gogoi SR, Devi N, Barman P, 2014. Aluminium Chloride–Catalyzed Synthesis of 4-Benzyl Cinnolines from Aryl Hydrazones. Synthetic Communications, 44 (8): 1142-1148.
  • Hamberg M, Samuelss B, 1973. Detection and Isolation of an Endoperoxide Intermediate in Prostaglandin Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 70 (3): 899-903.
  • Husain SS, Szabo IL, Tarnawski AS, 2002. NSAID inhibition of GI cancer growth: Clinical implications and molecular mechanisms of action. American Journal of Gastroenterology, 97 (3): 542-553.
  • Jagerovic N, Cano C, Elguero J, Goya P, Callado LF, Meana JJ, Giron R, Abalo R, Ruiz D, Goicoechea C, Martin MI, 2002. Long-acting fentanyl analogues: Synthesis and pharmacology of N-(1-phenylpyrazolyl)-N-(1-phenylalkyl-4-piperidyl)propanamides. Bioorganic & Medicinal Chemistry, 10 (3): 817-827.
  • Kamal A, Reddy VS, Shaik AB, Kumar GB, Vishnuvardhan MVPS, Polepalli S, Jain N, 2015. Synthesis of (Z)-(arylamino)-pyrazolyl/isoxazolyl-2-propenones as tubulin targeting anticancer agents and apoptotic inducers. Organic & Biomolecular Chemistry, 13 (11): 3416-3431.
  • Kashiwa M, Kuwata Y, Sonoda M, Tanimori S, 2016. Oxone-mediated facile access to substituted pyrazoles. Tetrahedron, 72 (2): 304-311.
  • Ma Y, Liang S, Zhang Y, Yang D, Wang, R, 2018. Development of anti-fungal pesticides from protein kinase inhibitor-based anticancer agents. European Journal of Medicinal Chemistry, 148, 349-358.
  • Nagarapu L, Mateti J, Gaikwad HK, Bantu R, Sheeba Rani M, Prameela Subhashini NJ, 2011. Synthesis and anti-inflammatory activity of some novel 3-phenyl-N-[3-(4-phenylpiperazin-1yl)propyl]-1H-pyrazole-5-carboxamide derivatives. Bioorganic & Medicinal Chemistry Letters, 21 (14): 4138-40.
  • Ning XL, Guo Y, Ma XY, Zhu RZ, Tian C, Wang XW, Ma ZZ, Zhang ZL, Liu JY, 2013. Synthesis and neuroprotective effect of E-3,4-dihydroxy styryl aralkyl ketones derivatives against oxidative stress and inflammation. Bioorganic & Medicinal Chemistry Letters, 23 (13): 3700-3703.
  • Nugteren DH, Hazelhof E, 1973. Isolation and Properties of Intermediates in Prostaglandin Biosynthesis. Biochimica Et Biophysica Acta, 326 (3): 448-461.
  • Pal M, Madan M, Padakanti S, Pattabiraman VR, Kalleda S, Vanguri A, Mullangi R, Mamidi NVSR, Casturi SR, Malde A, Gopalakrishnan B, Yeleswarapu KR, 2003. Synthesis and cyclooxygenase-2 inhibiting property of 1,5-diarylpyrazoles with substituted benzenesulfonamide moiety as pharmacophore: Preparation of sodium salt for injectable formulation. Journal of Medicinal Chemistry, 46 (19): 3975-3984.
  • Pal P, Jana N, Nanda S, 2014. Asymmetric total synthesis of paecilomycin E, 10'-epi-paecilomycin E and 6'-epi-cochliomycin C. Organic & Biomolecular Chemistry, 12 (41): 8257-74.
  • Senol H, Bayrak C, Menzek A, Sahin E, Karakus M, 2016. Cycloaddition reaction of spiro[2.4]hepta-4,6-dien-1-ylmethanol and PTAD: a new rearrangement. Tetrahedron, 72(20): 2587-2592.
  • Sharshira EM, Hamada NM, 2012. Synthesis and antimicrobial evaluation of some pyrazole derivatives. Molecules, 17 (5): 4962-71.
  • Shaw AY, Liau HH, Lu PJ, Yang CN, Lee CH, Chen JY, Xu Z, Flynn G, 2010. 3,5-Diaryl-1H-pyrazole as a molecular scaffold for the synthesis of apoptosis-inducing agents. Bioorg Med Chem, 18 (9): 3270-8.
  • Shingare RM, Patil YS, Sangshetti JN, Patil RB, Rajani DP, Rajani SD, Madje BR, 2018. Benzene sulfonamide pyrazole thio-oxadiazole hybrid as potential antimicrobial and antitubercular agents. Research on Chemical Intermediates, 44 (7): 4437-4453.
  • Wang ZL, Li HL, Ge LS, An XL, Zhang ZG, Luo X, Fossey JS, Deng WP, 2014. DDQ-mediated oxidative coupling: an approach to 2,3-dicyanofuran (thiophene). J Org Chem, 79 (3): 1156-65.
  • Wijtmans M, Maussang D, Sirci F, Scholten DJ, Canals M, Mujic-Delic A, Chong M, Chatalic KL, Custers H, Janssen E, de Graaf C, Smit MJ, de Esch IJ, Leurs R, 2012. Synthesis, modeling and functional activity of substituted styrene-amides as small-molecule CXCR7 agonists. European Journal of Medicinal Chemistry, 51, 184-92.
  • Xie WL, Chipman JG, Robertson DL, Erikson RL, Simmons DL, 1991. Expression of a Mitogen-Responsive Gene Encoding Prostaglandin Synthase Is Regulated by Messenger-Rna Splicing. Proceedings of the National Academy of Sciences of the United States of America, 88 (7): 2692-2696.
  • Zhang J, Shen B, Lin A, 2007. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol Sci, 28 (6): 286-95.
  • Zhang X, Kang J, Niu P, Wu J, Yu W, Chang J, 2014. I2-mediated oxidative C-N bond formation for metal-free one-pot synthesis of di-, tri-, and tetrasubstituted pyrazoles from alpha,beta-unsaturated aldehydes/ketones and hydrazines. J Org Chem, 79 (21): 10170-8.
  • Zhou HB, Carlson KE, Stossi F, Katzenellenbogen BS, Katzenellenbogen JA, 2009. Analogs of methyl-piperidinopyrazole (MPP): antiestrogens with estrogen receptor alpha selective activity. Bioorganic & Medicinal Chemistry Letters, 19 (1): 108-10.
Primary Language tr
Subjects Engineering, Chemical
Published Date Haziran-2021
Journal Section Kimya / Chemistry, Kimya Mühendisliği / Chemical Engineering
Authors

Orcid: 0000-0001-5169-7352
Author: Çetin BAYRAK (Primary Author)
Institution: Ağrı İbrahim Çeçen Üniversitesi
Country: Turkey


Thanks Bu çalışma Atatürk Üniversitesi Fen Fakültesi Kimya Bölümünde gerçekleştirilmiştir. Katkılarından dolayı Kimya bölümüne teşekkürlerimi sunarım.
Dates

Application Date : December 19, 2020
Acceptance Date : February 4, 2021
Publication Date : June 1, 2021

Bibtex @research article { jist843369, journal = {Journal of the Institute of Science and Technology}, issn = {2146-0574}, eissn = {2536-4618}, address = {}, publisher = {Igdir University}, year = {2021}, volume = {11}, pages = {1408 - 1419}, doi = {10.21597/jist.843369}, title = {Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri}, key = {cite}, author = {Bayrak, Çetin} }
APA Bayrak, Ç . (2021). Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri . Journal of the Institute of Science and Technology , 11 (2) , 1408-1419 . DOI: 10.21597/jist.843369
MLA Bayrak, Ç . "Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri" . Journal of the Institute of Science and Technology 11 (2021 ): 1408-1419 <https://dergipark.org.tr/en/pub/jist/issue/61423/843369>
Chicago Bayrak, Ç . "Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri". Journal of the Institute of Science and Technology 11 (2021 ): 1408-1419
RIS TY - JOUR T1 - Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri AU - Çetin Bayrak Y1 - 2021 PY - 2021 N1 - doi: 10.21597/jist.843369 DO - 10.21597/jist.843369 T2 - Journal of the Institute of Science and Technology JF - Journal JO - JOR SP - 1408 EP - 1419 VL - 11 IS - 2 SN - 2146-0574-2536-4618 M3 - doi: 10.21597/jist.843369 UR - https://doi.org/10.21597/jist.843369 Y2 - 2021 ER -
EndNote %0 Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri %A Çetin Bayrak %T Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri %D 2021 %J Journal of the Institute of Science and Technology %P 2146-0574-2536-4618 %V 11 %N 2 %R doi: 10.21597/jist.843369 %U 10.21597/jist.843369
ISNAD Bayrak, Çetin . "Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri". Journal of the Institute of Science and Technology 11 / 2 (June 2021): 1408-1419 . https://doi.org/10.21597/jist.843369
AMA Bayrak Ç . Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri. Iğdır Üniv. Fen Bil Enst. Der.. 2021; 11(2): 1408-1419.
Vancouver Bayrak Ç . Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri. Journal of the Institute of Science and Technology. 2021; 11(2): 1408-1419.
IEEE Ç. Bayrak , "Potansiyel Biyolojik Aktif Bazı Yeni Benzensülfonamid Yapısı Taşıyan Pirazol Türevlerinin Sentezleri", Journal of the Institute of Science and Technology, vol. 11, no. 2, pp. 1408-1419, Jun. 2021, doi:10.21597/jist.843369