Research Article
BibTex RIS Cite

Kök Yer Eğrisi ve Bode Diyagramı ile Gerçek Zamanlı DC Motor Konum Kontrolü İçin Faz İlerlemeli-Gerilemeli Denetleyici Tasarımı

Year 2021, Volume: 11 Issue: 3, 1874 - 1886, 01.09.2021
https://doi.org/10.21597/jist.865095

Abstract

Bu çalışmada, gerçek zamanlı DC motor konum kontrolü için klasik kontrol yöntemlerinden olan faz ilerlemeli ve faz ilerlemeli – gerilemeli denetleyici tasarımı kök yer eğrisi ve Bode diyagramı yöntemleri ile gerçekleştirilmiştir. Model tabanlı bir denetleyici tasarlanacağı için matematiksel model, kara kutu sistem tanımlama yöntemiyle deneysel verilerden hesaplanarak elde edilmiştir. STM32F4 geliştirme kiti ve Matlab destekli Waijung blok seti kullanılarak uygulama geliştirilmiştir. Denetleyici performansı, sisteme referans girişler verilmesi sonucu deney düzeneği üzerinde gerçek zamanlı sonuçların gözlenmesi ile test edilmiştir. Her iki yöntem tasarım sürecinin işleyişi ve yöntemlerin uygulanabilirliği gerçek zamanlı olarak gösterilmiş ve tasarlanan denetleyicilerin başarılı performans sergilediği gözlenmiştir. Gerçekleştirilen uygulamada kullanılan test düzeneği ve yöntemler, kontrol uygulamaları için hem güvenilir çalışma hem de ekonomik çözüm sunmaktadır.

References

  • Aimagin, 2017. Waijung BlockSet. https://waijung1.aimagin.com/ (Erişim Tarihi: 15.12.2020).
  • Alasooly H, 2011. Control of DC Motor Using Different Control Strategies. Global Journal of Technology & Optimization, 2: 1-8. Al-Gburi RNA, Aziz AS, 2016. Control System Design by Frequency Response Using Matlab. International Journal of New Technology and Research, 2(2), 78-84.
  • Beale G, 2001. Phase Lead Compensator Design Using Bode Plots, Classical Systems and Control Theory, in the Electrical and Computer Engineering Department, George Mason University, Fairfax.
  • Chen Y, 1989. Replacing a PID controller by a lat-lead compensator for a robot-a frequency-response approach. IEEE Transactions on Robotics and Automation, 5(2), 174–182.
  • Franklin GF, Powell JD, Emami-Naeini A, 2002. Feedback Control of Dynamic Systems. Prentice Hall, 880 s.
  • Golnaraghi F, Kuo B, 2010. Automatic Control Systems. 9th ed. John Wiley & Sons, Inc.
  • Güldemir H, 1991. Kontrol Sistemlerinin Bilgisayar Yardımı ile Frekans Analizi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, (Basılmış).
  • Hodel AS, Hall CE, 2001. Variable-structure PID control to prevent integrator windup. IEEE Transactions on Industrial Electronics, 48(2), 442–451.
  • Horng HY, 2012. Lead-lag compensator design based on genetic algorithms. Conference on Technologies and Applications of Artificial Intelligence (TAAI).
  • Kim K, Schaefer RC, 2005. Tuning a PID Controller for a Digital Excitation Control System. IEEE Transactions on Industry Applications, 41(2), 485-492.
  • Kizir S, Yaren T, Kelekçi E, 2019. Matlab Simulink Destekli Gerçek Zamanlı Kontrol. Seçkin Yayıncılık, s. 288, Ankara-Türkiye.
  • Kuo CB, 2016. Automatic Control Systems. 8th edition. Prentice Hall PTR Upper Saddle River, s. 933, NJ United States.
  • Mantz RJ, Battista HD, 2004. Comments on variable structure PID control to prevent integrator windup. IEEE Transactions on Industrial Electronics, 51(3), 736–738.
  • Nayak B, Kumar S, Dash SS, 2015. Design of Phase Lead Compensator for Buck Converter Fed Adjustable Speed Drive. International Conference on Communication, Control and Intelligent Systems.
  • Nise NS, 2011. Control Systems Engineering. 6th ed. John Wiley & Sons, Inc.
  • Ogata K, 2008. Modern Control Engineering. Pearson Education, 912 s.
  • Rohitha PD, Senadheera S, Pieper JK, 2005. Fully Automated PID and Lead/Lag Compensator Design tool for Industrial Use. IEEE Conference on Control Applications.
  • Toscano R, 2005. A simple robust PI/PID controller design via numerical optimization approach. Journal of Process Control, 15(2005), 81–88.
  • Tosun MF, Gençkal AA, Şenol R, 2019. Modern Kontrol Yöntemleri ile Bulanık Mantık Temelli Oda Sıcaklık Kontrolü. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 992-999.
  • Yaren T, Süel V, Yeniaydın Y, Sakacı B, Kizir S, 2014. STM32F4 Kiti ile Simulink Tabanlı Kontrol Eğitimi Uygulamaları Geliştirme. TOK Bildiri Kitabı, s. 65, Kocaeli-Türkiye.
  • Yeniaydın Y, Sakacı B, Yaren T, Süel V, Kizir S, 2014. DC Motor Hız Kontrolü için Model Referans Uyarlamalı PID Denetleyici Tasarımı. TOK Bildiri Kitabı, s. 65, Kocaeli-Türkiye.
  • Zanasi R, Coughi S, 2011. Design of lead-lag compensators for robust control. 9th IEEE International Conference on Control and Automation (ICCA).

Phase Lead-Lag Controller Design for Real-Time DC Motor Position Control with Root Locus and Bode Diagram

Year 2021, Volume: 11 Issue: 3, 1874 - 1886, 01.09.2021
https://doi.org/10.21597/jist.865095

Abstract

In this study, phase lead and phase lead-lag controller design, which are among the classical control methods, was implemented by root locus and Bode diagram methods for real-time DC motor position control. Since a model-based controller will be designed, the mathematical model has been obtained by calculating from experimental data with the black box system identification method. The implementation was developed using the STM32F4 development kit and the Waijung block set supported by Matlab. Controller performance has been tested by observing real-time results on the experimental setup as a result of giving reference inputs to the system. The functioning of the design process of both methods and the practicability of the methods were introduced in real-time and it was observed that the designed controllers achieved successful performance. The experimental setup and methods used in the application offer both reliable operation and economical solutions for control applications.

References

  • Aimagin, 2017. Waijung BlockSet. https://waijung1.aimagin.com/ (Erişim Tarihi: 15.12.2020).
  • Alasooly H, 2011. Control of DC Motor Using Different Control Strategies. Global Journal of Technology & Optimization, 2: 1-8. Al-Gburi RNA, Aziz AS, 2016. Control System Design by Frequency Response Using Matlab. International Journal of New Technology and Research, 2(2), 78-84.
  • Beale G, 2001. Phase Lead Compensator Design Using Bode Plots, Classical Systems and Control Theory, in the Electrical and Computer Engineering Department, George Mason University, Fairfax.
  • Chen Y, 1989. Replacing a PID controller by a lat-lead compensator for a robot-a frequency-response approach. IEEE Transactions on Robotics and Automation, 5(2), 174–182.
  • Franklin GF, Powell JD, Emami-Naeini A, 2002. Feedback Control of Dynamic Systems. Prentice Hall, 880 s.
  • Golnaraghi F, Kuo B, 2010. Automatic Control Systems. 9th ed. John Wiley & Sons, Inc.
  • Güldemir H, 1991. Kontrol Sistemlerinin Bilgisayar Yardımı ile Frekans Analizi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, (Basılmış).
  • Hodel AS, Hall CE, 2001. Variable-structure PID control to prevent integrator windup. IEEE Transactions on Industrial Electronics, 48(2), 442–451.
  • Horng HY, 2012. Lead-lag compensator design based on genetic algorithms. Conference on Technologies and Applications of Artificial Intelligence (TAAI).
  • Kim K, Schaefer RC, 2005. Tuning a PID Controller for a Digital Excitation Control System. IEEE Transactions on Industry Applications, 41(2), 485-492.
  • Kizir S, Yaren T, Kelekçi E, 2019. Matlab Simulink Destekli Gerçek Zamanlı Kontrol. Seçkin Yayıncılık, s. 288, Ankara-Türkiye.
  • Kuo CB, 2016. Automatic Control Systems. 8th edition. Prentice Hall PTR Upper Saddle River, s. 933, NJ United States.
  • Mantz RJ, Battista HD, 2004. Comments on variable structure PID control to prevent integrator windup. IEEE Transactions on Industrial Electronics, 51(3), 736–738.
  • Nayak B, Kumar S, Dash SS, 2015. Design of Phase Lead Compensator for Buck Converter Fed Adjustable Speed Drive. International Conference on Communication, Control and Intelligent Systems.
  • Nise NS, 2011. Control Systems Engineering. 6th ed. John Wiley & Sons, Inc.
  • Ogata K, 2008. Modern Control Engineering. Pearson Education, 912 s.
  • Rohitha PD, Senadheera S, Pieper JK, 2005. Fully Automated PID and Lead/Lag Compensator Design tool for Industrial Use. IEEE Conference on Control Applications.
  • Toscano R, 2005. A simple robust PI/PID controller design via numerical optimization approach. Journal of Process Control, 15(2005), 81–88.
  • Tosun MF, Gençkal AA, Şenol R, 2019. Modern Kontrol Yöntemleri ile Bulanık Mantık Temelli Oda Sıcaklık Kontrolü. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 992-999.
  • Yaren T, Süel V, Yeniaydın Y, Sakacı B, Kizir S, 2014. STM32F4 Kiti ile Simulink Tabanlı Kontrol Eğitimi Uygulamaları Geliştirme. TOK Bildiri Kitabı, s. 65, Kocaeli-Türkiye.
  • Yeniaydın Y, Sakacı B, Yaren T, Süel V, Kizir S, 2014. DC Motor Hız Kontrolü için Model Referans Uyarlamalı PID Denetleyici Tasarımı. TOK Bildiri Kitabı, s. 65, Kocaeli-Türkiye.
  • Zanasi R, Coughi S, 2011. Design of lead-lag compensators for robust control. 9th IEEE International Conference on Control and Automation (ICCA).
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Mertcan Özdağ 0000-0003-2582-4033

Tuğçe Yaren 0000-0001-9937-3111

Selçuk Kizir 0000-0002-0582-5904

Publication Date September 1, 2021
Submission Date January 20, 2021
Acceptance Date April 19, 2021
Published in Issue Year 2021 Volume: 11 Issue: 3

Cite

APA Özdağ, M., Yaren, T., & Kizir, S. (2021). Kök Yer Eğrisi ve Bode Diyagramı ile Gerçek Zamanlı DC Motor Konum Kontrolü İçin Faz İlerlemeli-Gerilemeli Denetleyici Tasarımı. Journal of the Institute of Science and Technology, 11(3), 1874-1886. https://doi.org/10.21597/jist.865095
AMA Özdağ M, Yaren T, Kizir S. Kök Yer Eğrisi ve Bode Diyagramı ile Gerçek Zamanlı DC Motor Konum Kontrolü İçin Faz İlerlemeli-Gerilemeli Denetleyici Tasarımı. J. Inst. Sci. and Tech. September 2021;11(3):1874-1886. doi:10.21597/jist.865095
Chicago Özdağ, Mertcan, Tuğçe Yaren, and Selçuk Kizir. “Kök Yer Eğrisi Ve Bode Diyagramı Ile Gerçek Zamanlı DC Motor Konum Kontrolü İçin Faz İlerlemeli-Gerilemeli Denetleyici Tasarımı”. Journal of the Institute of Science and Technology 11, no. 3 (September 2021): 1874-86. https://doi.org/10.21597/jist.865095.
EndNote Özdağ M, Yaren T, Kizir S (September 1, 2021) Kök Yer Eğrisi ve Bode Diyagramı ile Gerçek Zamanlı DC Motor Konum Kontrolü İçin Faz İlerlemeli-Gerilemeli Denetleyici Tasarımı. Journal of the Institute of Science and Technology 11 3 1874–1886.
IEEE M. Özdağ, T. Yaren, and S. Kizir, “Kök Yer Eğrisi ve Bode Diyagramı ile Gerçek Zamanlı DC Motor Konum Kontrolü İçin Faz İlerlemeli-Gerilemeli Denetleyici Tasarımı”, J. Inst. Sci. and Tech., vol. 11, no. 3, pp. 1874–1886, 2021, doi: 10.21597/jist.865095.
ISNAD Özdağ, Mertcan et al. “Kök Yer Eğrisi Ve Bode Diyagramı Ile Gerçek Zamanlı DC Motor Konum Kontrolü İçin Faz İlerlemeli-Gerilemeli Denetleyici Tasarımı”. Journal of the Institute of Science and Technology 11/3 (September 2021), 1874-1886. https://doi.org/10.21597/jist.865095.
JAMA Özdağ M, Yaren T, Kizir S. Kök Yer Eğrisi ve Bode Diyagramı ile Gerçek Zamanlı DC Motor Konum Kontrolü İçin Faz İlerlemeli-Gerilemeli Denetleyici Tasarımı. J. Inst. Sci. and Tech. 2021;11:1874–1886.
MLA Özdağ, Mertcan et al. “Kök Yer Eğrisi Ve Bode Diyagramı Ile Gerçek Zamanlı DC Motor Konum Kontrolü İçin Faz İlerlemeli-Gerilemeli Denetleyici Tasarımı”. Journal of the Institute of Science and Technology, vol. 11, no. 3, 2021, pp. 1874-86, doi:10.21597/jist.865095.
Vancouver Özdağ M, Yaren T, Kizir S. Kök Yer Eğrisi ve Bode Diyagramı ile Gerçek Zamanlı DC Motor Konum Kontrolü İçin Faz İlerlemeli-Gerilemeli Denetleyici Tasarımı. J. Inst. Sci. and Tech. 2021;11(3):1874-86.