Research Article
BibTex RIS Cite

Prediction of I-131 Influence in the Aegean Region by Chernobyl Accident Using the Ratio of I-129/I-127 in the Lake Sediments

Year 2022, Volume: 12 Issue: 1, 306 - 316, 01.03.2022
https://doi.org/10.21597/jist.984099

Abstract

After the Chernobyl accident, as in many countries, the short half-life I-131 radioactivity could not be measured in Turkey-Aegean Region. By using Cs-137 radioactivity, which is easy to monitor, I-131 radioactivity was tried to be predicted, but it was thought that the results obtained by these two radioisotopes because of their different chemical properties would not be correct. In this study I-129 was studied to predict the retrospective I-131 radioactivity. I-129, another iodine radioisotope, was thought to be more appropriate as a predictive agent because of the same chemical properties as I-131 and also its long half-life. I-129 was measured in the Bafa Lake sediments by using microwave digestion, extraction and AMS methods and retrospective I-131 activity was predicted. As a result, it was found that I-131 radioactivity values in Bafa Lake habitat is between 9.78x10-3 Bqkg-1 and 1.02x10-2 Bqkg-1 and the accuracy of the method used has been proved.

Supporting Institution

Muğla Sıtkı Koçman Üniversitesi, Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

16/112

Thanks

The authors would like to acknowledge the financial assistance of the Mugla Sitki Kocman University through the Grant 16/112 and Prof. Dr. Catalin Stan-sion, the Laboratory Head of the ‘Horia Hulubei National Institute of Physics and Nuclear Engineering R&D Institute’ for his valuable contribution.

References

  • Aldahan A, Alfimov V, Possnert G, 2007. 129-I Anthropogenic budget: Major sources and sinks. Applied Geochemistry, 22, 606–618.
  • Arntsing R, Bjurman B, Geer DLE, Edvarson K, Finck R, Jakobsson S, Vintersved, I, 1991. Field gamma ray spectrometry and soil sample measurements in Sweden following the Chernobyl accident A data report. National Defence Research Establishment, 26 p.
  • Balık S, Ustaoglu MR, 1989. Bioecological and economical investigation of Uluabat fish (Acanthobrama mirabilis Ladiges, 1960) in Lake Bafa, in Turkish. Turkish Journal of Zoology, 13:141-174.
  • Bennett B, Bouville A, Hall P, Savkin M, Storm H, 2000. Chernobyl Accident: Exposures and Effects. Japan Health Physics Society, T-12-1, P-11-251.
  • BstMLU, 1988. Radioaktive Kontamination der Boeden Bayerns, in German. Bayerische Staatsministerien fuer Landesentwicklung und Umweltfragen und fuer Ernaehrung, Landwirtschaft und Forsten, Munich.
  • Daraoui A, Michel R, Gorny M, Jakob D, Sachse R, Synal HA, Alfimov V, 2012. Iodine-127 and Caesium-137 in the environment: soils from Germany and Chile. Journal of Environmental Radioactivity, 112:8-22.
  • Dubina YV, Shchekin YK, Guskina LI, 1990. Systematisation and Verification of the Results of Spectrometric Measurements of Soil, Grass, Milk and Milk Production Samples with the Determined 131I Content. Institute of Nuclear Energy of the Belorussian Academy of Science.
  • Edwards RR, 1962. Iodine-129: its occurrence in nature and its utility as a tracer, Science, 137:851-853
  • Englund E, Aldahan A, Possnert, 2008. Tracing anthropogenic nuclear activity with 129I in lake sediment. Journal of Environmental Radioactivity, 99:219-229.
  • Englund E, Aldahan A, Hou XL, Petersen R, Possnert G, 2010. Speciation of iodine, I-127 and 129I in lake sediments. Nuclear Instruments and Methods in Physics Research, B268:1102-1105.
  • Ensor DS, 2011. Aerosol Science and Technology: History and Reviews. RTI International is a trade name of Research Triangle Institute, ISBN: 978-1-934831-01-4.
  • Ernst T, Szidat S, Handl J, Jakob D, Michel R, Benne J, Boess E, Gehrt E, Capelle A, Schneider J, Schafer W, Bottcher J, 2003. Migration of iodine-129 and iodine-127 in soils. Kerntechnik, 68:155-167.
  • Ezerinskis Z, Hou XL, Druteikiene R, Puzas A, Sapolaite J, Gvozdait R, Gudellis A, Buivydas S, Remeikis V, 2016. Distribution and source of 129I, Pu-239, Pu-240, Cs-137 in the environment of Lithuania. Journal of Environmental Radioactivity, 151:166-173.
  • Fabryka-Martin J, Bentley H, Elmore D, Airey PL, 1985. Natural iodine-129 as an environmental tracer. Geochimica et Cosmochimica Acta, 49:337-347.
  • Fan Y, Hou X, Zhou W, Liu G, 2016. 129I record of nuclear activities in marine sediment core from Jiaozhou Bay in China. Journal of Environmental Radioactivity, 154:15-24.
  • Fehn U, Snyder GT, Varekamp JC, 2002. Detection of recycled marine sediment components in crater lake £uids using 129I. Journal of Volcanology and Geothermal Research, 115:451-460.
  • Fujiwara H, 2016. Observation of radioactive iodine (131I, 129I) in cropland soil after the Fukushima nuclear accident. Sci. Totan. Environ. 566-567: 1432-1439
  • Gomez-Guzman JM, Enamorado-Baez SM, Pinto-Gomez AR, Abril-Hemandez JM, 2011. Microwave-based digestion method for extraction of I-127 and 129I from solid material for measurements by AMS and ICP-MS. International Journal of Mass Spectrometry, 303:103-108.
  • Hou XL, Fogh CL, Kucera J, Andersson KG, Dahlgaard H, Nielsen SP, 2003. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. The Science of the Total Environment, 308:97-109.
  • Hou X, Hansen V, Aldahan A, Possnert G, Lind OC, Lujaniene G, 2009. A review on speciation of iodine-129 in the environmental and biological samples. Anal Chim Acta, 632:181-196.
  • Hou XL, Zhou WJ, Chen N, Zhang LY, Liu Q, Luo MY, Fan YK, Liang WG, Fu YC, 2010. Determination of ultralow level 129I/I-127 in natural samples by separation of microgram carrier free iodine and accelerator mass spectrometry detection. Anal Chem, 82:7713-7721.
  • Hou XL, Fogh CL, Kucera J, Andersson KG, Dahlgaard H, Nielsen SP, 2003. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. The Science of the Total Environment, 308:97-109.
  • Kaeri “Table of Nuclides” http://atomkaerirekr/nuchart/?zlv=2 (Erişim: 6 Şubat 2019).
  • Liu G, Li D, Yi Y, Liu S, Bai J, Zhang J, 2008. Radionuclide distribution in sediments and sedimentary rates in the Jiaozhou Bay. Acta Geosci Sin, 29:769-777.
  • Matsunaka T, Sasa K, Sueki K, Takahashi T, Satou Y, Matsumara M, Kinoshita N, Kitagawa J, Matsuzaki H, 2015. Pre-and post-accident 129I and Cs-137 levels, and 129I/Cs-137 ratios in soil near the Fukushima Dai-ichi Nuclear Power Plant. Japan Journal of Environmental Radioactivity 151:209-217.
  • Matsuzaki H, Muramatsu Y, Kato K, Yasumoto M, Nakano C, 2007. Development of 129I-AMS system at MALT and measurements of 129I concentrations in several Japanese soils. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259:721-726.
  • MEXT, 2011. Preparation of Distribution Map of Radiation Doses, Map of Iodine 131 Concentration in Soil., Organized by MEXT September 21, 2011, in Japanese.
  • Michel R, Handl J, Ernst T, Botsch W, Szidat S, Schmidt A, Jakob D, Beltz D, Romantschuk LD, Synal HA, Schnabela C, Lopez-Gutierrez JM, 2005. Iodine-129 in soils from Northern Ukraine and the retrospective dosimetry of the iodine-131 exposure after the Chernobyl accident. Science of the Total Environment, 340:35-55.
  • Mironov V, Kudrjashov V, Yiou F, Raisbeck GM, 2002. Use of 129I and Cs-137 in soils for the estimation of 131I deposition in Belarus as a result of the Chernobyl accident. Journal of Environmental Radioactivity, 59:293-307.
  • Miyake Y, Matsuzaki H, Fujiwara T, Saito T, Yamagata T, Honda M, Muramatsu Y, 2012. Isotopic ratio of radioactive iodine, 129I/131I released from Fukushima Daiichi NPP accident. Geochemical Journal, 46:327-333.
  • Miyake Y, Matsuzaki H, Sasa K, Takahashi T, 2015. Measurement of long-lived radionuclides in surface soil around F1NPP accident site by Accelerator Mass Spectrometry. Nuclear Instruments and Methods in Physics Research, B361:627-631.
  • Muramatsu Y, Takada Y, Matsuzaki H, Yoshid S, 2008. AMS analysis of 129I in Japanese soil samples collected from background areas far from nuclear facilities. Quaternary Geochronology, 3:291-297.
  • Muramatsu Y, Matsuzaki H, Toyama C, Ohno T, 2015. Analysis of 129I in the soils of Fukushima Prefecture: preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi Nuclear Power Plant, FDNPP. Journal of Environmental Radioactivity, 139:344-350.
  • Otosaka S, Satoh Y, Suzuki T, Kuwubara J, Nakanishi T, 2018. Distribution and fate of 129I in the seabed sediment of Fukushima. Journal of Environmental Radioactivity, 192:208-218.
  • Raisbeck GM, Yiou F, 1999. 129 I in the oceans: origins and applications. The Science of the Total Environment 237/238 31-41.
  • TAEK_a, Çernobil Nükleer Santralinin Özellikleri ve Kazanın Oluşumu, 2007. 2 Basım, 24 sayfa, Ankara-Türkiye.
  • TAEK_b, Çernobil Kazasının Ülkeler Üzerindeki Etkileri, 2007. 2 Basım, 60 sayfa, Ankara-Türkiye.
  • TAEK_c, Türkiyede Çernobil Sonrası Radyasyon ve Radyoaktivite Ölçümleri, 2007. 2 Basım, 107 sayfa, Ankara-Türkiye.
  • UNSCEAR, 2008. Sources And Effects Of Ionizing Radiation, Report To The General Assembly With Scientific Annexes, VOLUME II Scientific Annexes C, D And E, ISBN-13: 978-92-1-142280-1.
  • Vanmiddlesworth L, Handl J, 1997. 129I, 131I and I-127 in animal thyroids after the Chernobyl nuclear accident. Health Phys, 73:647-50
  • Yang G, Tazoe H, Yamada M, 2017. Can 129I track Cs-135, U-236, Pu-239, and Pu-240 apart from 131I in soil samples from Fukushima Prefecture, Japan. Scıentıfıc Reports, 7:15369.
  • Yılgör S, 2012. Bafa Gölü Sedimanlarında Ağır Metal Kirliliğinin Araştırılması. Dokuz Eylül Üniversitesi, Doktora Tezi, İzmir.
  • Zhang LY, Zhou WJ, Hou XL, Chen N, Liu Q, He CH, Fan YK, Luo MY, Wang ZW, Fu YC, 2011. Level and source of 129I of environmental samples in Xi’an region. China Sci Total Environ, 409:3780-3788.
  • Zhang L, Hou X, Li H, Xu X, 2018. A 60-year record of 129I in Taal Lake sediments, Philippines: Influence of human nuclear activities at low latitude regions. Chemosphere, 193:1149-1156.
Year 2022, Volume: 12 Issue: 1, 306 - 316, 01.03.2022
https://doi.org/10.21597/jist.984099

Abstract

Project Number

16/112

References

  • Aldahan A, Alfimov V, Possnert G, 2007. 129-I Anthropogenic budget: Major sources and sinks. Applied Geochemistry, 22, 606–618.
  • Arntsing R, Bjurman B, Geer DLE, Edvarson K, Finck R, Jakobsson S, Vintersved, I, 1991. Field gamma ray spectrometry and soil sample measurements in Sweden following the Chernobyl accident A data report. National Defence Research Establishment, 26 p.
  • Balık S, Ustaoglu MR, 1989. Bioecological and economical investigation of Uluabat fish (Acanthobrama mirabilis Ladiges, 1960) in Lake Bafa, in Turkish. Turkish Journal of Zoology, 13:141-174.
  • Bennett B, Bouville A, Hall P, Savkin M, Storm H, 2000. Chernobyl Accident: Exposures and Effects. Japan Health Physics Society, T-12-1, P-11-251.
  • BstMLU, 1988. Radioaktive Kontamination der Boeden Bayerns, in German. Bayerische Staatsministerien fuer Landesentwicklung und Umweltfragen und fuer Ernaehrung, Landwirtschaft und Forsten, Munich.
  • Daraoui A, Michel R, Gorny M, Jakob D, Sachse R, Synal HA, Alfimov V, 2012. Iodine-127 and Caesium-137 in the environment: soils from Germany and Chile. Journal of Environmental Radioactivity, 112:8-22.
  • Dubina YV, Shchekin YK, Guskina LI, 1990. Systematisation and Verification of the Results of Spectrometric Measurements of Soil, Grass, Milk and Milk Production Samples with the Determined 131I Content. Institute of Nuclear Energy of the Belorussian Academy of Science.
  • Edwards RR, 1962. Iodine-129: its occurrence in nature and its utility as a tracer, Science, 137:851-853
  • Englund E, Aldahan A, Possnert, 2008. Tracing anthropogenic nuclear activity with 129I in lake sediment. Journal of Environmental Radioactivity, 99:219-229.
  • Englund E, Aldahan A, Hou XL, Petersen R, Possnert G, 2010. Speciation of iodine, I-127 and 129I in lake sediments. Nuclear Instruments and Methods in Physics Research, B268:1102-1105.
  • Ensor DS, 2011. Aerosol Science and Technology: History and Reviews. RTI International is a trade name of Research Triangle Institute, ISBN: 978-1-934831-01-4.
  • Ernst T, Szidat S, Handl J, Jakob D, Michel R, Benne J, Boess E, Gehrt E, Capelle A, Schneider J, Schafer W, Bottcher J, 2003. Migration of iodine-129 and iodine-127 in soils. Kerntechnik, 68:155-167.
  • Ezerinskis Z, Hou XL, Druteikiene R, Puzas A, Sapolaite J, Gvozdait R, Gudellis A, Buivydas S, Remeikis V, 2016. Distribution and source of 129I, Pu-239, Pu-240, Cs-137 in the environment of Lithuania. Journal of Environmental Radioactivity, 151:166-173.
  • Fabryka-Martin J, Bentley H, Elmore D, Airey PL, 1985. Natural iodine-129 as an environmental tracer. Geochimica et Cosmochimica Acta, 49:337-347.
  • Fan Y, Hou X, Zhou W, Liu G, 2016. 129I record of nuclear activities in marine sediment core from Jiaozhou Bay in China. Journal of Environmental Radioactivity, 154:15-24.
  • Fehn U, Snyder GT, Varekamp JC, 2002. Detection of recycled marine sediment components in crater lake £uids using 129I. Journal of Volcanology and Geothermal Research, 115:451-460.
  • Fujiwara H, 2016. Observation of radioactive iodine (131I, 129I) in cropland soil after the Fukushima nuclear accident. Sci. Totan. Environ. 566-567: 1432-1439
  • Gomez-Guzman JM, Enamorado-Baez SM, Pinto-Gomez AR, Abril-Hemandez JM, 2011. Microwave-based digestion method for extraction of I-127 and 129I from solid material for measurements by AMS and ICP-MS. International Journal of Mass Spectrometry, 303:103-108.
  • Hou XL, Fogh CL, Kucera J, Andersson KG, Dahlgaard H, Nielsen SP, 2003. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. The Science of the Total Environment, 308:97-109.
  • Hou X, Hansen V, Aldahan A, Possnert G, Lind OC, Lujaniene G, 2009. A review on speciation of iodine-129 in the environmental and biological samples. Anal Chim Acta, 632:181-196.
  • Hou XL, Zhou WJ, Chen N, Zhang LY, Liu Q, Luo MY, Fan YK, Liang WG, Fu YC, 2010. Determination of ultralow level 129I/I-127 in natural samples by separation of microgram carrier free iodine and accelerator mass spectrometry detection. Anal Chem, 82:7713-7721.
  • Hou XL, Fogh CL, Kucera J, Andersson KG, Dahlgaard H, Nielsen SP, 2003. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. The Science of the Total Environment, 308:97-109.
  • Kaeri “Table of Nuclides” http://atomkaerirekr/nuchart/?zlv=2 (Erişim: 6 Şubat 2019).
  • Liu G, Li D, Yi Y, Liu S, Bai J, Zhang J, 2008. Radionuclide distribution in sediments and sedimentary rates in the Jiaozhou Bay. Acta Geosci Sin, 29:769-777.
  • Matsunaka T, Sasa K, Sueki K, Takahashi T, Satou Y, Matsumara M, Kinoshita N, Kitagawa J, Matsuzaki H, 2015. Pre-and post-accident 129I and Cs-137 levels, and 129I/Cs-137 ratios in soil near the Fukushima Dai-ichi Nuclear Power Plant. Japan Journal of Environmental Radioactivity 151:209-217.
  • Matsuzaki H, Muramatsu Y, Kato K, Yasumoto M, Nakano C, 2007. Development of 129I-AMS system at MALT and measurements of 129I concentrations in several Japanese soils. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259:721-726.
  • MEXT, 2011. Preparation of Distribution Map of Radiation Doses, Map of Iodine 131 Concentration in Soil., Organized by MEXT September 21, 2011, in Japanese.
  • Michel R, Handl J, Ernst T, Botsch W, Szidat S, Schmidt A, Jakob D, Beltz D, Romantschuk LD, Synal HA, Schnabela C, Lopez-Gutierrez JM, 2005. Iodine-129 in soils from Northern Ukraine and the retrospective dosimetry of the iodine-131 exposure after the Chernobyl accident. Science of the Total Environment, 340:35-55.
  • Mironov V, Kudrjashov V, Yiou F, Raisbeck GM, 2002. Use of 129I and Cs-137 in soils for the estimation of 131I deposition in Belarus as a result of the Chernobyl accident. Journal of Environmental Radioactivity, 59:293-307.
  • Miyake Y, Matsuzaki H, Fujiwara T, Saito T, Yamagata T, Honda M, Muramatsu Y, 2012. Isotopic ratio of radioactive iodine, 129I/131I released from Fukushima Daiichi NPP accident. Geochemical Journal, 46:327-333.
  • Miyake Y, Matsuzaki H, Sasa K, Takahashi T, 2015. Measurement of long-lived radionuclides in surface soil around F1NPP accident site by Accelerator Mass Spectrometry. Nuclear Instruments and Methods in Physics Research, B361:627-631.
  • Muramatsu Y, Takada Y, Matsuzaki H, Yoshid S, 2008. AMS analysis of 129I in Japanese soil samples collected from background areas far from nuclear facilities. Quaternary Geochronology, 3:291-297.
  • Muramatsu Y, Matsuzaki H, Toyama C, Ohno T, 2015. Analysis of 129I in the soils of Fukushima Prefecture: preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi Nuclear Power Plant, FDNPP. Journal of Environmental Radioactivity, 139:344-350.
  • Otosaka S, Satoh Y, Suzuki T, Kuwubara J, Nakanishi T, 2018. Distribution and fate of 129I in the seabed sediment of Fukushima. Journal of Environmental Radioactivity, 192:208-218.
  • Raisbeck GM, Yiou F, 1999. 129 I in the oceans: origins and applications. The Science of the Total Environment 237/238 31-41.
  • TAEK_a, Çernobil Nükleer Santralinin Özellikleri ve Kazanın Oluşumu, 2007. 2 Basım, 24 sayfa, Ankara-Türkiye.
  • TAEK_b, Çernobil Kazasının Ülkeler Üzerindeki Etkileri, 2007. 2 Basım, 60 sayfa, Ankara-Türkiye.
  • TAEK_c, Türkiyede Çernobil Sonrası Radyasyon ve Radyoaktivite Ölçümleri, 2007. 2 Basım, 107 sayfa, Ankara-Türkiye.
  • UNSCEAR, 2008. Sources And Effects Of Ionizing Radiation, Report To The General Assembly With Scientific Annexes, VOLUME II Scientific Annexes C, D And E, ISBN-13: 978-92-1-142280-1.
  • Vanmiddlesworth L, Handl J, 1997. 129I, 131I and I-127 in animal thyroids after the Chernobyl nuclear accident. Health Phys, 73:647-50
  • Yang G, Tazoe H, Yamada M, 2017. Can 129I track Cs-135, U-236, Pu-239, and Pu-240 apart from 131I in soil samples from Fukushima Prefecture, Japan. Scıentıfıc Reports, 7:15369.
  • Yılgör S, 2012. Bafa Gölü Sedimanlarında Ağır Metal Kirliliğinin Araştırılması. Dokuz Eylül Üniversitesi, Doktora Tezi, İzmir.
  • Zhang LY, Zhou WJ, Hou XL, Chen N, Liu Q, He CH, Fan YK, Luo MY, Wang ZW, Fu YC, 2011. Level and source of 129I of environmental samples in Xi’an region. China Sci Total Environ, 409:3780-3788.
  • Zhang L, Hou X, Li H, Xu X, 2018. A 60-year record of 129I in Taal Lake sediments, Philippines: Influence of human nuclear activities at low latitude regions. Chemosphere, 193:1149-1156.
There are 44 citations in total.

Details

Primary Language English
Subjects Environmental Engineering, Chemical Engineering
Journal Section Kimya / Chemistry
Authors

David Alper Dilek This is me 0000-0002-0603-6595

Ezgi Eren Belgin 0000-0002-1089-3741

Gül Asiye Ayçık This is me 0000-0001-8978-4363

Project Number 16/112
Publication Date March 1, 2022
Submission Date August 18, 2021
Acceptance Date December 24, 2021
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Dilek, D. A., Eren Belgin, E., & Ayçık, G. A. (2022). Prediction of I-131 Influence in the Aegean Region by Chernobyl Accident Using the Ratio of I-129/I-127 in the Lake Sediments. Journal of the Institute of Science and Technology, 12(1), 306-316. https://doi.org/10.21597/jist.984099
AMA Dilek DA, Eren Belgin E, Ayçık GA. Prediction of I-131 Influence in the Aegean Region by Chernobyl Accident Using the Ratio of I-129/I-127 in the Lake Sediments. J. Inst. Sci. and Tech. March 2022;12(1):306-316. doi:10.21597/jist.984099
Chicago Dilek, David Alper, Ezgi Eren Belgin, and Gül Asiye Ayçık. “Prediction of I-131 Influence in the Aegean Region by Chernobyl Accident Using the Ratio of I-129/I-127 in the Lake Sediments”. Journal of the Institute of Science and Technology 12, no. 1 (March 2022): 306-16. https://doi.org/10.21597/jist.984099.
EndNote Dilek DA, Eren Belgin E, Ayçık GA (March 1, 2022) Prediction of I-131 Influence in the Aegean Region by Chernobyl Accident Using the Ratio of I-129/I-127 in the Lake Sediments. Journal of the Institute of Science and Technology 12 1 306–316.
IEEE D. A. Dilek, E. Eren Belgin, and G. A. Ayçık, “Prediction of I-131 Influence in the Aegean Region by Chernobyl Accident Using the Ratio of I-129/I-127 in the Lake Sediments”, J. Inst. Sci. and Tech., vol. 12, no. 1, pp. 306–316, 2022, doi: 10.21597/jist.984099.
ISNAD Dilek, David Alper et al. “Prediction of I-131 Influence in the Aegean Region by Chernobyl Accident Using the Ratio of I-129/I-127 in the Lake Sediments”. Journal of the Institute of Science and Technology 12/1 (March 2022), 306-316. https://doi.org/10.21597/jist.984099.
JAMA Dilek DA, Eren Belgin E, Ayçık GA. Prediction of I-131 Influence in the Aegean Region by Chernobyl Accident Using the Ratio of I-129/I-127 in the Lake Sediments. J. Inst. Sci. and Tech. 2022;12:306–316.
MLA Dilek, David Alper et al. “Prediction of I-131 Influence in the Aegean Region by Chernobyl Accident Using the Ratio of I-129/I-127 in the Lake Sediments”. Journal of the Institute of Science and Technology, vol. 12, no. 1, 2022, pp. 306-1, doi:10.21597/jist.984099.
Vancouver Dilek DA, Eren Belgin E, Ayçık GA. Prediction of I-131 Influence in the Aegean Region by Chernobyl Accident Using the Ratio of I-129/I-127 in the Lake Sediments. J. Inst. Sci. and Tech. 2022;12(1):306-1.