Research Article
BibTex RIS Cite
Year 2023, Volume: 13 Issue: 3, 1946 - 1957, 01.09.2023
https://doi.org/10.21597/jist.1275258

Abstract

Supporting Institution

Tübitak

Project Number

2209-A

References

  • Aldemir, A., Kul, A. R. (2020). Isotherm, kinetic and thermodynamic studies for the adsorption of methylene blue on almond leaf powder. Cumhuriyet Science Journal, 41(3), 651-658. https://doi.org/10.17776/csj.720332.
  • Al-Ghouti, M.A., Da'ana, D.A., (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.
  • Ali, N.S., Jabbar, N.M., Alardhi, S.M., Majdi, H.S., Albayati, T.M. (2022). Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: isotherm, kinetics, and thermodynamic studies, Heliyon, 8(8), e10276. https://doi.org/10.1016/j.heliyon.2022.e10276.
  • Bayram, O., Moral, E., Göde, F. (2023). Removal of Crystal Violet Dye from Aqueous Solution Using Biochar Obtained from Oleaster Seeds. Journal of the Institute of Science and Technology,13(1), 448-457. https://doi.org/10.21597/jist.1170769
  • Ben-Ali, S., Jaouali, I., Souissi-Najar, S., Ouederni, A. (2017). Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. Journal of Cleaner Production, 142(4), 3809-3821. https://doi.org/10.1016/j.jclepro.2016.10.081.
  • Dinçer, A. Sevildik, M., Aydemir, T. (2019). Optimization, isotherm and kinetics studies of azo dye adsorption on eggshell membrane. International Journal of Chemistry and Technology, 3(1), 52-60. https://doi.org/10.32571/ijct.538736.
  • Fatma O. E. (2019). Freundlich, Langmuir, Temkin, DR and Harkins-Jura Isotherm Studies on the Adsorption of CO2 on Various Porous Adsorbents. International Journal of Chemical Reactor Engineering, 17(5), 20180134. https://doi.org/10.1515/ijcre-2018-0134.
  • Foo, K.Y., Hameed, B.H., Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 156(1), 2-10. https://doi.org/10.1016/j.cej.2009.09.013.
  • Güneş, D.S. (2020). Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays. Sakarya University Journal of Science, 24(5), 1081-1093. https://doi.org/10.16984/saufenbilder.526957.
  • Gürses, A. Güneş, K., Şahin, E. (2021). Chapter 5 - Removal of dyes and pigments from industrial effluents, In Advances in Green and Sustainable Chemistry, Elsevier, 135-187. https://doi.org/10.1016/B978-0-12-817742-6.00005-0.
  • Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan G., Imran, A., Sillanpää, M., (2020). Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 18, 393–415. https://doi.org/10.1007/s10311-019-00955-0.
  • Karabaş, B., Keskinkan, O., Sarı, B., Yeşiltaş, H. Kıvanç, E., Çağatayhan, B. (2022). The usage of palm (Washingtonia filifera) fibers for the removal of crystal violet from synthetic dye solution by adsorption. International Journal of Chemistry and Technology, 6(1), 66-75. https://doi.org/10.32571/ijct.1131313.
  • Kul, A.R., Aldemir, A., Elik, H. (2019). Adsorption of Acid Blue 25 on peach seed powder: Isotherm, kinetic and thermodynamic studies. Environmental Research and Technology, 2(4), 233-242. https://doi.org/10.35208/ert.650398
  • Malik, R., Ramteke, D.S., Wate, S.R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manag., 27, 1129–1138. https://doi.org/10.1016/j.wasman.2006.06.009.
  • Manisha, C., Rahul, K., Sudarsan, N. (2020). Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water, Journal of Hazardous Materials, 392, 122441. https://doi.org/10.1016/j.jhazmat.2020.122441.
  • Manna, S., Roy, D., Saha, P., Gopakumar, D., Thomas, S. (2017). Rapid methylene blue adsorption using modified lignocellulosic materials. Process Safety and Environmental Protection, 107, 346-356. https://doi.org/10.1016/j.psep.2017.03.008.
  • Mudzielwana, R., Gitari, M.W., Ndungu, P. (2019). Performance evaluation of surfactant modified kaolin clay in As(III) and As(V) adsorption from groundwater: adsorption kinetics, isotherms and thermodynamics, Heliyon, 5(11), e02756. https://doi.org/10.1016/j.heliyon.2019.e02756.
  • Öter, Ç. (2021). Bioadsorbent Efficiency in Heavy Metal Removal from Aqueous Solutions: Adsorption Kinetics, Isotherm, and Thermodynamics. Hittite Journal of Science and Engineering, 8(4), 313-320. https://doi.org/10.17350/HJSE19030000244
  • Revellame, E.D. Fortela, D.L., Sharp, W., Hernandez, R., Zappi, M.E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032. https://doi.org/10.1016/j.clet.2020.100032.
  • Villen-Guzman, M., Gutierrez-Pinilla, D., Gomez-Lahoz, C., Vereda-Alonso, C., Rodriguez-Maroto, J.M., Arhoun, B. (2019). Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel, Environmental Research, 179, 108849. https://doi.org/10.1016/j.envres.2019.108849.
  • Wang, J., Guo, X. (2020). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390, 122156. https://doi.org/10.1016/j.jhazmat.2020.122156.
  • Wibowo, E., Rokhmat, M., Khairurrijal, S., Abdullah, M. (2017). Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics, Desalination, 409, 146-156. https://doi.org/10.1016/j.desal.2017.01.026.
  • Yu, Q., Li, M., Ji, X., Qiu, Y., Zhu, Y., Leng, C. (2016). Characterization and methanol adsorption of walnut-shell activated carbon prepared by KOH activation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 260–268. https://doi.org/10.1007/s11595-016-1362-3
  • Yu, X., Bao, X., Zhou, C., Zhang, L., El-Gasim, A., Yagoub, A., Yang, H., Ma, H., (2018). Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose, Ultrasonics Sonochemistry, 41, 410-418. https://doi.org/10.1016/j.ultsonch.2017.09.003. Zhezi, Z., Mingming, Z., Dongke, Z., (2018). A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass. Applied Energy, 220, 87-93. https://doi.org/10.1016/j.apenergy.2018.03.057.

Removal of crystal Violet From Aqueous Solutions by A Newly Developed Adsorbent: İsotherm, Kinetics, and Thermodynamics

Year 2023, Volume: 13 Issue: 3, 1946 - 1957, 01.09.2023
https://doi.org/10.21597/jist.1275258

Abstract

Aim of this study, adsorption potential of modified and natural materials is investigated. The adsorbent used is watermelon peel (WP) derived from agricultural wastes to remove crystal violet (CV). The modified and raw adsorbent was characterized by Elemental analysis, Scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The studied parameters are temperature, initial metal concentration, and contact time. The most suitable kinetic (R2=0.99) and isotherm (R2=0.99) models were determined as Pseudo-second-order and Langmuir, respectively. The maximum adsorption capacity (qmax) according to Langmuir is 236.9 mg/g at 30°C. Thermodynamic analysis revealed spontaneous and endothermic adsorption of CV on modified watermelon peels. These results demonstrate that crystal violet can be removed from agricultural wastes using a low-cost adsorbent.

Project Number

2209-A

References

  • Aldemir, A., Kul, A. R. (2020). Isotherm, kinetic and thermodynamic studies for the adsorption of methylene blue on almond leaf powder. Cumhuriyet Science Journal, 41(3), 651-658. https://doi.org/10.17776/csj.720332.
  • Al-Ghouti, M.A., Da'ana, D.A., (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.
  • Ali, N.S., Jabbar, N.M., Alardhi, S.M., Majdi, H.S., Albayati, T.M. (2022). Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: isotherm, kinetics, and thermodynamic studies, Heliyon, 8(8), e10276. https://doi.org/10.1016/j.heliyon.2022.e10276.
  • Bayram, O., Moral, E., Göde, F. (2023). Removal of Crystal Violet Dye from Aqueous Solution Using Biochar Obtained from Oleaster Seeds. Journal of the Institute of Science and Technology,13(1), 448-457. https://doi.org/10.21597/jist.1170769
  • Ben-Ali, S., Jaouali, I., Souissi-Najar, S., Ouederni, A. (2017). Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. Journal of Cleaner Production, 142(4), 3809-3821. https://doi.org/10.1016/j.jclepro.2016.10.081.
  • Dinçer, A. Sevildik, M., Aydemir, T. (2019). Optimization, isotherm and kinetics studies of azo dye adsorption on eggshell membrane. International Journal of Chemistry and Technology, 3(1), 52-60. https://doi.org/10.32571/ijct.538736.
  • Fatma O. E. (2019). Freundlich, Langmuir, Temkin, DR and Harkins-Jura Isotherm Studies on the Adsorption of CO2 on Various Porous Adsorbents. International Journal of Chemical Reactor Engineering, 17(5), 20180134. https://doi.org/10.1515/ijcre-2018-0134.
  • Foo, K.Y., Hameed, B.H., Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 156(1), 2-10. https://doi.org/10.1016/j.cej.2009.09.013.
  • Güneş, D.S. (2020). Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays. Sakarya University Journal of Science, 24(5), 1081-1093. https://doi.org/10.16984/saufenbilder.526957.
  • Gürses, A. Güneş, K., Şahin, E. (2021). Chapter 5 - Removal of dyes and pigments from industrial effluents, In Advances in Green and Sustainable Chemistry, Elsevier, 135-187. https://doi.org/10.1016/B978-0-12-817742-6.00005-0.
  • Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan G., Imran, A., Sillanpää, M., (2020). Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 18, 393–415. https://doi.org/10.1007/s10311-019-00955-0.
  • Karabaş, B., Keskinkan, O., Sarı, B., Yeşiltaş, H. Kıvanç, E., Çağatayhan, B. (2022). The usage of palm (Washingtonia filifera) fibers for the removal of crystal violet from synthetic dye solution by adsorption. International Journal of Chemistry and Technology, 6(1), 66-75. https://doi.org/10.32571/ijct.1131313.
  • Kul, A.R., Aldemir, A., Elik, H. (2019). Adsorption of Acid Blue 25 on peach seed powder: Isotherm, kinetic and thermodynamic studies. Environmental Research and Technology, 2(4), 233-242. https://doi.org/10.35208/ert.650398
  • Malik, R., Ramteke, D.S., Wate, S.R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manag., 27, 1129–1138. https://doi.org/10.1016/j.wasman.2006.06.009.
  • Manisha, C., Rahul, K., Sudarsan, N. (2020). Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water, Journal of Hazardous Materials, 392, 122441. https://doi.org/10.1016/j.jhazmat.2020.122441.
  • Manna, S., Roy, D., Saha, P., Gopakumar, D., Thomas, S. (2017). Rapid methylene blue adsorption using modified lignocellulosic materials. Process Safety and Environmental Protection, 107, 346-356. https://doi.org/10.1016/j.psep.2017.03.008.
  • Mudzielwana, R., Gitari, M.W., Ndungu, P. (2019). Performance evaluation of surfactant modified kaolin clay in As(III) and As(V) adsorption from groundwater: adsorption kinetics, isotherms and thermodynamics, Heliyon, 5(11), e02756. https://doi.org/10.1016/j.heliyon.2019.e02756.
  • Öter, Ç. (2021). Bioadsorbent Efficiency in Heavy Metal Removal from Aqueous Solutions: Adsorption Kinetics, Isotherm, and Thermodynamics. Hittite Journal of Science and Engineering, 8(4), 313-320. https://doi.org/10.17350/HJSE19030000244
  • Revellame, E.D. Fortela, D.L., Sharp, W., Hernandez, R., Zappi, M.E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032. https://doi.org/10.1016/j.clet.2020.100032.
  • Villen-Guzman, M., Gutierrez-Pinilla, D., Gomez-Lahoz, C., Vereda-Alonso, C., Rodriguez-Maroto, J.M., Arhoun, B. (2019). Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel, Environmental Research, 179, 108849. https://doi.org/10.1016/j.envres.2019.108849.
  • Wang, J., Guo, X. (2020). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390, 122156. https://doi.org/10.1016/j.jhazmat.2020.122156.
  • Wibowo, E., Rokhmat, M., Khairurrijal, S., Abdullah, M. (2017). Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics, Desalination, 409, 146-156. https://doi.org/10.1016/j.desal.2017.01.026.
  • Yu, Q., Li, M., Ji, X., Qiu, Y., Zhu, Y., Leng, C. (2016). Characterization and methanol adsorption of walnut-shell activated carbon prepared by KOH activation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 260–268. https://doi.org/10.1007/s11595-016-1362-3
  • Yu, X., Bao, X., Zhou, C., Zhang, L., El-Gasim, A., Yagoub, A., Yang, H., Ma, H., (2018). Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose, Ultrasonics Sonochemistry, 41, 410-418. https://doi.org/10.1016/j.ultsonch.2017.09.003. Zhezi, Z., Mingming, Z., Dongke, Z., (2018). A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass. Applied Energy, 220, 87-93. https://doi.org/10.1016/j.apenergy.2018.03.057.
There are 24 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

İlhan Küçük 0000-0003-2876-3942

Merve Gözcü 0009-0004-2355-9867

Project Number 2209-A
Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date April 1, 2023
Acceptance Date May 25, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Küçük, İ., & Gözcü, M. (2023). Removal of crystal Violet From Aqueous Solutions by A Newly Developed Adsorbent: İsotherm, Kinetics, and Thermodynamics. Journal of the Institute of Science and Technology, 13(3), 1946-1957. https://doi.org/10.21597/jist.1275258
AMA Küçük İ, Gözcü M. Removal of crystal Violet From Aqueous Solutions by A Newly Developed Adsorbent: İsotherm, Kinetics, and Thermodynamics. J. Inst. Sci. and Tech. September 2023;13(3):1946-1957. doi:10.21597/jist.1275258
Chicago Küçük, İlhan, and Merve Gözcü. “Removal of Crystal Violet From Aqueous Solutions by A Newly Developed Adsorbent: İsotherm, Kinetics, and Thermodynamics”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 1946-57. https://doi.org/10.21597/jist.1275258.
EndNote Küçük İ, Gözcü M (September 1, 2023) Removal of crystal Violet From Aqueous Solutions by A Newly Developed Adsorbent: İsotherm, Kinetics, and Thermodynamics. Journal of the Institute of Science and Technology 13 3 1946–1957.
IEEE İ. Küçük and M. Gözcü, “Removal of crystal Violet From Aqueous Solutions by A Newly Developed Adsorbent: İsotherm, Kinetics, and Thermodynamics”, J. Inst. Sci. and Tech., vol. 13, no. 3, pp. 1946–1957, 2023, doi: 10.21597/jist.1275258.
ISNAD Küçük, İlhan - Gözcü, Merve. “Removal of Crystal Violet From Aqueous Solutions by A Newly Developed Adsorbent: İsotherm, Kinetics, and Thermodynamics”. Journal of the Institute of Science and Technology 13/3 (September 2023), 1946-1957. https://doi.org/10.21597/jist.1275258.
JAMA Küçük İ, Gözcü M. Removal of crystal Violet From Aqueous Solutions by A Newly Developed Adsorbent: İsotherm, Kinetics, and Thermodynamics. J. Inst. Sci. and Tech. 2023;13:1946–1957.
MLA Küçük, İlhan and Merve Gözcü. “Removal of Crystal Violet From Aqueous Solutions by A Newly Developed Adsorbent: İsotherm, Kinetics, and Thermodynamics”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 1946-57, doi:10.21597/jist.1275258.
Vancouver Küçük İ, Gözcü M. Removal of crystal Violet From Aqueous Solutions by A Newly Developed Adsorbent: İsotherm, Kinetics, and Thermodynamics. J. Inst. Sci. and Tech. 2023;13(3):1946-57.