Research Article
BibTex RIS Cite

Enhancing the Structural and Mechanical Properties of Ti-Zr Alloy through Boron Doping

Year 2024, Volume: 14 Issue: 1, 412 - 421, 01.03.2024
https://doi.org/10.21597/jist.1301838

Abstract

This study aims to improve the structural strength of the commonly used Ti-15Zr alloy in dental applications by investigating the effects of low boron additions. Ti-15Zr alloys containing 1-4% boron have been produced by vacuum arc melting. The phase ratios in the microstructure of the produced alloys vary according to the boron content. With increasing boron content, the ratio of TiB compound in the phase structure increases. The hardness of Ti-Zr-B alloys exhibited a notable increase in correlation with rising boron content. Measured hardness values of 36.31, 39.50, 44.14, and 53.40 displayed a clear upward trend with higher boron percentages. The tensile strength of the Ti-Zr-B alloys exhibits a trend of initially increasing with boron content, reaching its highest value of 888 MPa at 1% boron. The yield strength follows a similar with tensile strengh, with an initial rise from 449 MPa at 0% boron to a peak of 562 MPa at 1% boron content. Beyond this point, the yield strength slightly decreases to 469 MPa at 2% boron but sharply drops to 186 MPa at 4% boron content. As boron content increases in the Ti-Zr-B alloys, the percentage elongation, indicating the material's plastic deformation capacity before fracture, consistently decreases from 17.03% at 0% boron to 0.70% at 4% boron content.

Supporting Institution

Karadeniz Technical University University Scientific Research Projects Coordination Unit

Project Number

FBA-2020-8810

Thanks

This study was supported by Karadeniz Technical University University Scientific Research Projects Coordination Unit with Project number of FBA-2020-8810.

References

  • Achmad, R., B. Budiawan and E. Auerkari (2017). "Effects of Chromium on Human Body." Annual Research & Review in Biology 13(2): 1-8.
  • Chui, P. F. (2018). "Effect of boron content on microstructure and mechanical properties of Ti50Zr50 alloys." Vacuum 154: 25-31.
  • Correa, D. R. N., P. A. B. Kuroda, M. L. Lourenco, M. A. R. Buzalaf, M. E. Mendoza, B. S. Archanjo, C. A. Achete, L. A. Rocha and C. R. Grandini (2018). "Microstructure and selected mechanical properties of aged Ti-15Zr-based alloys for biomedical applications." Materials Science & Engineering C-Materials for Biological Applications 91: 762-771.
  • Correa, D. R. N., F. B. Vicente, T. A. G. Donato, V. E. Arana-Chavez, M. A. R. Buzalaf and C. R. Grandini (2014). "The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti-Zr system alloys for dental applications." Materials Science & Engineering C-Materials for Biological Applications 34: 354-359.
  • Demirci, S., M. S. Kaya, A. Dogan, S. Kalay, N. O. Altin, A. Yarat, S. H. Akyuz and F. Sahin (2015). "Antibacterial and cytotoxic properties of boron-containing dental composite." Turkish Journal of Biology 39(3): 417-426.
  • Ge, H., Z. Li, L. Jiang, Q. Li, C. Geng, X. Yao, X. Shi, Y. Liu and J. Cao (2019). "Cr (VI) induces crosstalk between apoptosis and autophagy through endoplasmic reticulum stress in A549 cells." Chemico-Biological Interactions 298: 35-42.
  • Grandin, H. M., S. Berner and M. Dard (2012). "A Review of Titanium Zirconium (TiZr) Alloys for Use in Endosseous Dental Implants." Materials 5(8): 1348-1360.
  • Ho, W. F., W. K. Chen, S. C. Wu and H. C. Hsu (2008). "Structure, mechanical properties, and grindability of dental Ti-Zr alloys." Journal of Materials Science-Materials in Medicine 19(10): 3179-3186.
  • Ho, W. F., C. H. Cheng, C. H. Pan, S. C. Wu and H. C. Hsu (2009). "Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys." Materials Science & Engineering CBiomimetic and Supramolecular Systems 29(1): 36-43.
  • Jiang, F., W. Zhu, C. Zhao, Y. Li, P. Wei, T. Wan, H. Ye, S. Pan and F. Ren (2019). "A strong, wear- and corrosion-resistant, and antibacterial Co–30 at.% Cr–5 at.% Ag ternary alloy for medical implants." Materials & Design 184: 108190.
  • Kaczmarek, M., M. U. Jurczyk, A. Miklaszewski, A. Paszel-Jaworska, A. Romaniuk, N. Lipinska, J. Zurawski, P. Urbaniak and K. Jurczyk (2016). "In vitro biocompatibility of titanium after plasma surface alloying with boron." Materials Science & Engineering C-Materials for Biological Applications 69: 1240-1247.
  • Kobayashi, E., S. Matsumoto, H. Doi, T. Yoneyama and H. Hamanaka (1995). "Mechanical- Properties of the Binary Titanium-Zirconium Alloys and Their Potential for Biomedical Materials." Journal of Biomedical Materials Research 29(8): 943-950.
  • Louzguina-Luzgina, L. V., D. V. Louzguine-Luzgin and A. Inoue (2009). "Effect of B addition to hypereutectic Ti-based alloys." Journal of Alloys and Compounds 474(1-2): 131-133.
  • Medvedev, A. E., A. Molotnikov, R. Lapovok, R. Zeller, S. Berner, P. Habersetzer and F. Dalla Torre (2016). "Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material." Journal of the Mechanical Behavior of Biomedical Materials 62: 384-398.
  • Pan, Y. F., C. Zhang, J. X. Zhang, L. Huang, X. Y. Yang, Y. Dui and F. H. Luo (2019)."Thermodynamic Modeling of the B-Ti-Zr System Over the Whole Composition and Temperature Ranges." Journal of Phase Equilibria and Diffusion 40(3): 364-374.
  • Pereira, C., E. Eskelson, V. Cavalli, P. Liporoni, A. Jorge and M. d. Rego (2011). "Streptococcus mutans Biofilm Adhesion on Composite Resin Surfaces After Different Finishing and Polishing Techniques." 36(3): 311-317.
  • Sopchenski, L., S. Cogo, M. F. Dias-Ntipanyj, S. Elifio-Espósito, K. C. Popat and P. Soares (2018). "Bioactive and antibacterial boron doped TiO2 coating obtained by PEO." Applied Surface Science 458: 49-58.
  • Tamirisakandala, S., R. B. Bhat, J. S. Tiley and D. B. Miracle (2005). "Grain refinement of cast titanium alloys via trace boron addition." Scripta Materialia 53(12): 1421-1426.
  • Uluisik, I., H. C. Karakaya and A. Koc (2018). "The importance of boron in biological systems." Journal of Trace Elements in Medicine and Biology 45: 156-162.
  • Xia, C. Q., X. J. Jiang, X. Y. Wang, Y. K. Zhou, Z. H. Feng, C. L. Tan, M. Z. Ma and R. P. Liu (2015). "Structure and mechanical properties of as-cast (ZrTi)(100-x)B-x alloys." Journal of Alloys and Compounds 637: 90-97.
  • Xia, C., Zhang, X., Liu, S., Chen, B., Tan, C., Zhang, X., Ma, M. and Liu. R. (2018). "Thermo-mechanical processing, microstructure and mechanical properties of TiZrB alloy." Materials Science and Engineering: A 712: 350-357.
  • Xue, X., Y. Wang and H. Yang (2013). "Preparation and characterization of boron-doped titania nano-materials with antibacterial activity." Applied Surface Science 264: 94-99.
  • Zhang, C. J., F. T. Kong, S. L. Xiao, E. T. Zhao, L. J. Xu and Y. Y. Chen (2012). "Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB plus TiC) reinforcements." Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 548: 152-160.
  • Zhu, J., A. Kamiya, T. Yamada, W. Shi and K. Naganuma (2003). "Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys." Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 339(1-2): 53- 62.
Year 2024, Volume: 14 Issue: 1, 412 - 421, 01.03.2024
https://doi.org/10.21597/jist.1301838

Abstract

Project Number

FBA-2020-8810

References

  • Achmad, R., B. Budiawan and E. Auerkari (2017). "Effects of Chromium on Human Body." Annual Research & Review in Biology 13(2): 1-8.
  • Chui, P. F. (2018). "Effect of boron content on microstructure and mechanical properties of Ti50Zr50 alloys." Vacuum 154: 25-31.
  • Correa, D. R. N., P. A. B. Kuroda, M. L. Lourenco, M. A. R. Buzalaf, M. E. Mendoza, B. S. Archanjo, C. A. Achete, L. A. Rocha and C. R. Grandini (2018). "Microstructure and selected mechanical properties of aged Ti-15Zr-based alloys for biomedical applications." Materials Science & Engineering C-Materials for Biological Applications 91: 762-771.
  • Correa, D. R. N., F. B. Vicente, T. A. G. Donato, V. E. Arana-Chavez, M. A. R. Buzalaf and C. R. Grandini (2014). "The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti-Zr system alloys for dental applications." Materials Science & Engineering C-Materials for Biological Applications 34: 354-359.
  • Demirci, S., M. S. Kaya, A. Dogan, S. Kalay, N. O. Altin, A. Yarat, S. H. Akyuz and F. Sahin (2015). "Antibacterial and cytotoxic properties of boron-containing dental composite." Turkish Journal of Biology 39(3): 417-426.
  • Ge, H., Z. Li, L. Jiang, Q. Li, C. Geng, X. Yao, X. Shi, Y. Liu and J. Cao (2019). "Cr (VI) induces crosstalk between apoptosis and autophagy through endoplasmic reticulum stress in A549 cells." Chemico-Biological Interactions 298: 35-42.
  • Grandin, H. M., S. Berner and M. Dard (2012). "A Review of Titanium Zirconium (TiZr) Alloys for Use in Endosseous Dental Implants." Materials 5(8): 1348-1360.
  • Ho, W. F., W. K. Chen, S. C. Wu and H. C. Hsu (2008). "Structure, mechanical properties, and grindability of dental Ti-Zr alloys." Journal of Materials Science-Materials in Medicine 19(10): 3179-3186.
  • Ho, W. F., C. H. Cheng, C. H. Pan, S. C. Wu and H. C. Hsu (2009). "Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys." Materials Science & Engineering CBiomimetic and Supramolecular Systems 29(1): 36-43.
  • Jiang, F., W. Zhu, C. Zhao, Y. Li, P. Wei, T. Wan, H. Ye, S. Pan and F. Ren (2019). "A strong, wear- and corrosion-resistant, and antibacterial Co–30 at.% Cr–5 at.% Ag ternary alloy for medical implants." Materials & Design 184: 108190.
  • Kaczmarek, M., M. U. Jurczyk, A. Miklaszewski, A. Paszel-Jaworska, A. Romaniuk, N. Lipinska, J. Zurawski, P. Urbaniak and K. Jurczyk (2016). "In vitro biocompatibility of titanium after plasma surface alloying with boron." Materials Science & Engineering C-Materials for Biological Applications 69: 1240-1247.
  • Kobayashi, E., S. Matsumoto, H. Doi, T. Yoneyama and H. Hamanaka (1995). "Mechanical- Properties of the Binary Titanium-Zirconium Alloys and Their Potential for Biomedical Materials." Journal of Biomedical Materials Research 29(8): 943-950.
  • Louzguina-Luzgina, L. V., D. V. Louzguine-Luzgin and A. Inoue (2009). "Effect of B addition to hypereutectic Ti-based alloys." Journal of Alloys and Compounds 474(1-2): 131-133.
  • Medvedev, A. E., A. Molotnikov, R. Lapovok, R. Zeller, S. Berner, P. Habersetzer and F. Dalla Torre (2016). "Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material." Journal of the Mechanical Behavior of Biomedical Materials 62: 384-398.
  • Pan, Y. F., C. Zhang, J. X. Zhang, L. Huang, X. Y. Yang, Y. Dui and F. H. Luo (2019)."Thermodynamic Modeling of the B-Ti-Zr System Over the Whole Composition and Temperature Ranges." Journal of Phase Equilibria and Diffusion 40(3): 364-374.
  • Pereira, C., E. Eskelson, V. Cavalli, P. Liporoni, A. Jorge and M. d. Rego (2011). "Streptococcus mutans Biofilm Adhesion on Composite Resin Surfaces After Different Finishing and Polishing Techniques." 36(3): 311-317.
  • Sopchenski, L., S. Cogo, M. F. Dias-Ntipanyj, S. Elifio-Espósito, K. C. Popat and P. Soares (2018). "Bioactive and antibacterial boron doped TiO2 coating obtained by PEO." Applied Surface Science 458: 49-58.
  • Tamirisakandala, S., R. B. Bhat, J. S. Tiley and D. B. Miracle (2005). "Grain refinement of cast titanium alloys via trace boron addition." Scripta Materialia 53(12): 1421-1426.
  • Uluisik, I., H. C. Karakaya and A. Koc (2018). "The importance of boron in biological systems." Journal of Trace Elements in Medicine and Biology 45: 156-162.
  • Xia, C. Q., X. J. Jiang, X. Y. Wang, Y. K. Zhou, Z. H. Feng, C. L. Tan, M. Z. Ma and R. P. Liu (2015). "Structure and mechanical properties of as-cast (ZrTi)(100-x)B-x alloys." Journal of Alloys and Compounds 637: 90-97.
  • Xia, C., Zhang, X., Liu, S., Chen, B., Tan, C., Zhang, X., Ma, M. and Liu. R. (2018). "Thermo-mechanical processing, microstructure and mechanical properties of TiZrB alloy." Materials Science and Engineering: A 712: 350-357.
  • Xue, X., Y. Wang and H. Yang (2013). "Preparation and characterization of boron-doped titania nano-materials with antibacterial activity." Applied Surface Science 264: 94-99.
  • Zhang, C. J., F. T. Kong, S. L. Xiao, E. T. Zhao, L. J. Xu and Y. Y. Chen (2012). "Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB plus TiC) reinforcements." Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 548: 152-160.
  • Zhu, J., A. Kamiya, T. Yamada, W. Shi and K. Naganuma (2003). "Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys." Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 339(1-2): 53- 62.
There are 24 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Metallurgical and Materials
Authors

Kürşat İcin 0000-0002-5160-6753

Sefa Emre Sünbül 0000-0002-2648-9268

Raşit Sezer 0000-0001-9655-2114

Project Number FBA-2020-8810
Early Pub Date February 20, 2024
Publication Date March 1, 2024
Submission Date May 24, 2023
Acceptance Date October 16, 2023
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA İcin, K., Sünbül, S. E., & Sezer, R. (2024). Enhancing the Structural and Mechanical Properties of Ti-Zr Alloy through Boron Doping. Journal of the Institute of Science and Technology, 14(1), 412-421. https://doi.org/10.21597/jist.1301838
AMA İcin K, Sünbül SE, Sezer R. Enhancing the Structural and Mechanical Properties of Ti-Zr Alloy through Boron Doping. J. Inst. Sci. and Tech. March 2024;14(1):412-421. doi:10.21597/jist.1301838
Chicago İcin, Kürşat, Sefa Emre Sünbül, and Raşit Sezer. “Enhancing the Structural and Mechanical Properties of Ti-Zr Alloy through Boron Doping”. Journal of the Institute of Science and Technology 14, no. 1 (March 2024): 412-21. https://doi.org/10.21597/jist.1301838.
EndNote İcin K, Sünbül SE, Sezer R (March 1, 2024) Enhancing the Structural and Mechanical Properties of Ti-Zr Alloy through Boron Doping. Journal of the Institute of Science and Technology 14 1 412–421.
IEEE K. İcin, S. E. Sünbül, and R. Sezer, “Enhancing the Structural and Mechanical Properties of Ti-Zr Alloy through Boron Doping”, J. Inst. Sci. and Tech., vol. 14, no. 1, pp. 412–421, 2024, doi: 10.21597/jist.1301838.
ISNAD İcin, Kürşat et al. “Enhancing the Structural and Mechanical Properties of Ti-Zr Alloy through Boron Doping”. Journal of the Institute of Science and Technology 14/1 (March 2024), 412-421. https://doi.org/10.21597/jist.1301838.
JAMA İcin K, Sünbül SE, Sezer R. Enhancing the Structural and Mechanical Properties of Ti-Zr Alloy through Boron Doping. J. Inst. Sci. and Tech. 2024;14:412–421.
MLA İcin, Kürşat et al. “Enhancing the Structural and Mechanical Properties of Ti-Zr Alloy through Boron Doping”. Journal of the Institute of Science and Technology, vol. 14, no. 1, 2024, pp. 412-21, doi:10.21597/jist.1301838.
Vancouver İcin K, Sünbül SE, Sezer R. Enhancing the Structural and Mechanical Properties of Ti-Zr Alloy through Boron Doping. J. Inst. Sci. and Tech. 2024;14(1):412-21.