Research Article
BibTex RIS Cite

Çarpık Eksenli Standart Çelik Profillerin Eğilme Kapasitelerinin İncelenmesi

Year 2024, Volume: 14 Issue: 1, 284 - 293, 01.03.2024
https://doi.org/10.21597/jist.1356630

Abstract

Çelik yapılar gelişmişlik seviyesinin de bir göstergesi olarak günlük hayatta giderek fazla yer bulmaktadır. Ancak, çelik yapıların imalat ve montajı esnasında bazı problemlerle karşılaşılması kaçınılmazdır. Bu tür problemler büyük veya küçük boyutlu olabilmektedirler. Bu tür problemlerden önde gelen bir tanesi; standart profillerden oluşturulan kiriş sisteminde, kirişlerin yerleştirilmesi ile ortaya çıkan hatalardır. Bu durum yapının projelendirilmesi sürecinde ön görülen kabuller ile uyum göstermemektedir. Böyle bir durumda yapı hesaplanan yükleri taşıyamayacak ve yapı ciddi hasarlar alabilecek bir duruma gelebilecektir. Bu kapsamında; taşıyıcı sistemi çelik olarak imal edilen binalarda kiriş olarak kullanılan standart profillerin eksenlerinden 5°, 10°, 15°, 20° ve 25°’lik açılarla montaj sürecinde hatalı olarak yerleştirilmesi sebebiyle meydana gelecek olumsuz durumlar incelenmiştir. Çelik kirişlerin yerleştirilmesinde meydana gelen çarpıklık sebebiyle ortaya çıkan eksenden kaçıklık kiriş için projesinde ön görülen yük kapasitesi azalmış ve bu duruma paralel olarak elamanın ve/veya yapının taşıma kapasitesini de büyük ölçüde zayıflamıştır. Çarpık eksenli olarak hazırlanan çelik profillerle yapılan deneyler sonucunda yük-deplasman grafikleri elde edilerek, taşıma kapasitesindeki kayıplar; hatasız (mükemmel) profillerle karşılaştırılarak bu tür imalat veya montaj hatalarının yapıda meydana getirdiği taşıma gücü kayıpları irdelenmiştir. Elde edilen deneysel sonuçların irdelenmesiyle birlikte bu tür montaj ve/veya imalat hatalarının olumsuz etkileri ve bu etkilerin seviyesi literatüre kazandırılacak, mühendislik bilinç ve ön görüsünün gelişimimin sağlanarak geleceğe matuf muhtemel işçilik, montaj vb. hataların önüne geçilmesi planlanmaktadır.

References

  • Á. Sapkás, L.P. Kollár, (2002). Lateral-torsional buckling of composite beams. International Journal of Solids and Structures, 39(11), 2939-2963.
  • A.A. Matloub, Y.S. Rizk, M.M. Fawzy, A.H. Yousef, (2023). Innovative steel I-girder under bending having hollow tubular flanges. Ain Shams Engineering Journal, 14(6), 102146.
  • E. Ellobody, (2011). Interaction of buckling modes in castellated steel beams, Journal of Constructıonal Steel Research., 67 (5), pp. 814-825. DOI: 10.1016/j.jcsr.2010.12.012
  • H. Showkati, T.G. Ghazijahani, A. Noori, T. Zirakian, (2012). Experiments on elastically braced castellated beams, Journal Of Constructıonal Steel Research, 77, pp-163-172. DOI 10.1016/j.jcsr.2012.05.008
  • J. Megharief, R. Redwood,(1998). Behavior of composite castellated beams, Journal Of Constructıonal Steel Research, 46 (1), pp. 199-200. DOI: 10.1016/S0143-974X(98)80019-9
  • J.P. Boyer, (1964). Castellated beams - new developments, AISC Engineering Journal, 1, pp. 104-108.
  • M.R. Soltani, A. Bouchaïr, M. Mimoune, (2012). Nonlinear FE analysis of the ultimate behavior of steel castellated beams, Journal of Constructıonal Steel Research, 70, pp- 101-104. DOI: 10.1016/j.jcsr.2011.10.016.
  • P. Mandal, C.R. Calladine, (2002). Lateral-torsional buckling of beams and the Southwell plot. International Journal of Mechanical Sciences, 44(12), 2557-2571.
  • P. Studer, A. Taras, (2023). Strain-hardening dependent cross-sectional slenderness limits for the plastic resistance of steel beams. Journal of Constructional Steel Research, 205, 107879.
  • S. Gholizadeh, A. Pirmoz, R. Attarnejad, (2011). Assessment of load carrying capacity of castellated steel beams by neural networks, Journal Of Constructıonal Steel Research., 67 (5), pp. 770-779. DOI:10.1016/j.jcsr.2011.01.001
  • T. Belaid, A. Slimani, F. Ammari, D. Boukhalfa, R. Adman, (2023). Formulation of the critical lateral buckling moment of steel beams under asymmetric loadings. Thin-Walled Structures, 182, 110163.
  • T. Okubo, D.A. Nethercot, (1985). Web-post strength in castellated steel beams, Proceedings of the Institution of Civil Engineers, 79 (3), pp. 533-557. DOI: 10.1680/iicep.1985.837
  • T. Zirakian, H. Showkati, (2006). Distortional buckling of castellated beams, Journal Of Constructıonal Steel Research., 62 (9), pp. 863-871.DOI: 10.1016/j.jcsr.2006.01.004
  • W.A. Salah, (2023). Lateral Torsional Buckling Capacity Assessment of Cellular Steel Beams. Practice Periodical on Structural Design and Construction, 28(1), 04022065.
  • W. Zaarour, R. Redwood, (1996). Web buckling in thin webbed castellated beams, Journal Of Structural Engıneerıng, 122 (8), pp. 860-866. DOI: 10.1061/(ASCE)0733-9445(1996)122:8(860)
  • W.M. Sebastian, J. Ross, T. Keller, S. Luke, (2012). Load response due to local and global indeterminacies of FRP-deck bridges, Composıtes Part B-Engıneerıng, 43 (4), pp. 1727-1738. DOI:10.1016/j.compositesb.2012.01.061 X. Liu, Y. Wang, H. Ban, M. Liu, M. Veljkovic, F.S. Bijlaard, (2020). Flexural strength and rotation capacity of welded I-section steel beams with longitudinally profiled flanges, J. Constr. Steel Res. 173 (2020) 106255

Investigation of Flexural Capacities of Warped Axis Standard Steel Profiles

Year 2024, Volume: 14 Issue: 1, 284 - 293, 01.03.2024
https://doi.org/10.21597/jist.1356630

Abstract

Steel structures are increasingly taking place in daily life as an indicator of the level of development. However, it is inevitable to encounter some problems during the manufacturing and assembly of steel structures. Such problems can be large or small. One of the leading problems of this kind; These are the errors that occur with the placement of the beams in the beam system formed from standard profiles. This situation does not comply with the assumptions foreseen in the project design process of the building. In such a case, the structure will not be able to carry the calculated loads and the structure will be in a situation where serious damage can occur. Within this scope; In this study, negative situations that may occur due to incorrect placement of the standard profiles used as beams in buildings whose carrier system is made of steel at 5°, 10°, 15° and 20° angles from their axes during the assembly process were examined. The load capacity foreseen in the project for the eccentricity beam caused by the skewness in the placement of the steel beams has decreased and in parallel to this situation, the bearing capacity of the element and/or the structure has weakened considerably. The load-displacement graphs were obtained as a result of the experiments with the steel profiles prepared with a crooked axis, and the losses in the carrying capacity; By comparing with the perfect (perfect) profiles, the bearing capacity losses caused by such manufacturing or assembly errors in the structure are examined. With the examination of the experimental results obtained, the negative effects of such as assembly and /or manufacturing error, and the level of these effects will be brought to the literature. It is planned to prevent errors.

Supporting Institution

Projemiz Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon birimince (BAP) FAB-2022-10449 nolu proje kapsamında desteklenmiştir.

Thanks

Projemiz Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon birimince (BAP) FAB-2022-10449 nolu proje kapsamında desteklenmiştir. Deneylerin hazırlanmasında ve yapımında katkılarından dolayı Atateknokent firması Maali̇ Çeli̇k Ar-Ge Danışmanlık Müh. İnş. Taa. San. Tic. Ltd. Şti. ye teşekkür ederiz.

References

  • Á. Sapkás, L.P. Kollár, (2002). Lateral-torsional buckling of composite beams. International Journal of Solids and Structures, 39(11), 2939-2963.
  • A.A. Matloub, Y.S. Rizk, M.M. Fawzy, A.H. Yousef, (2023). Innovative steel I-girder under bending having hollow tubular flanges. Ain Shams Engineering Journal, 14(6), 102146.
  • E. Ellobody, (2011). Interaction of buckling modes in castellated steel beams, Journal of Constructıonal Steel Research., 67 (5), pp. 814-825. DOI: 10.1016/j.jcsr.2010.12.012
  • H. Showkati, T.G. Ghazijahani, A. Noori, T. Zirakian, (2012). Experiments on elastically braced castellated beams, Journal Of Constructıonal Steel Research, 77, pp-163-172. DOI 10.1016/j.jcsr.2012.05.008
  • J. Megharief, R. Redwood,(1998). Behavior of composite castellated beams, Journal Of Constructıonal Steel Research, 46 (1), pp. 199-200. DOI: 10.1016/S0143-974X(98)80019-9
  • J.P. Boyer, (1964). Castellated beams - new developments, AISC Engineering Journal, 1, pp. 104-108.
  • M.R. Soltani, A. Bouchaïr, M. Mimoune, (2012). Nonlinear FE analysis of the ultimate behavior of steel castellated beams, Journal of Constructıonal Steel Research, 70, pp- 101-104. DOI: 10.1016/j.jcsr.2011.10.016.
  • P. Mandal, C.R. Calladine, (2002). Lateral-torsional buckling of beams and the Southwell plot. International Journal of Mechanical Sciences, 44(12), 2557-2571.
  • P. Studer, A. Taras, (2023). Strain-hardening dependent cross-sectional slenderness limits for the plastic resistance of steel beams. Journal of Constructional Steel Research, 205, 107879.
  • S. Gholizadeh, A. Pirmoz, R. Attarnejad, (2011). Assessment of load carrying capacity of castellated steel beams by neural networks, Journal Of Constructıonal Steel Research., 67 (5), pp. 770-779. DOI:10.1016/j.jcsr.2011.01.001
  • T. Belaid, A. Slimani, F. Ammari, D. Boukhalfa, R. Adman, (2023). Formulation of the critical lateral buckling moment of steel beams under asymmetric loadings. Thin-Walled Structures, 182, 110163.
  • T. Okubo, D.A. Nethercot, (1985). Web-post strength in castellated steel beams, Proceedings of the Institution of Civil Engineers, 79 (3), pp. 533-557. DOI: 10.1680/iicep.1985.837
  • T. Zirakian, H. Showkati, (2006). Distortional buckling of castellated beams, Journal Of Constructıonal Steel Research., 62 (9), pp. 863-871.DOI: 10.1016/j.jcsr.2006.01.004
  • W.A. Salah, (2023). Lateral Torsional Buckling Capacity Assessment of Cellular Steel Beams. Practice Periodical on Structural Design and Construction, 28(1), 04022065.
  • W. Zaarour, R. Redwood, (1996). Web buckling in thin webbed castellated beams, Journal Of Structural Engıneerıng, 122 (8), pp. 860-866. DOI: 10.1061/(ASCE)0733-9445(1996)122:8(860)
  • W.M. Sebastian, J. Ross, T. Keller, S. Luke, (2012). Load response due to local and global indeterminacies of FRP-deck bridges, Composıtes Part B-Engıneerıng, 43 (4), pp. 1727-1738. DOI:10.1016/j.compositesb.2012.01.061 X. Liu, Y. Wang, H. Ban, M. Liu, M. Veljkovic, F.S. Bijlaard, (2020). Flexural strength and rotation capacity of welded I-section steel beams with longitudinally profiled flanges, J. Constr. Steel Res. 173 (2020) 106255
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Steel Structures
Journal Section İnşaat Mühendisliği / Civil Engineering
Authors

Mahmut Kılıç 0000-0003-0947-685X

Abdulkadir Cuneyt Aydın 0000-0002-6696-4297

Mahyar Maali 0000-0002-6398-1139

Merve Sagiroglu 0000-0001-8717-0800

Early Pub Date February 20, 2024
Publication Date March 1, 2024
Submission Date September 7, 2023
Acceptance Date December 11, 2023
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Kılıç, M., Aydın, A. C., Maali, M., Sagiroglu, M. (2024). Çarpık Eksenli Standart Çelik Profillerin Eğilme Kapasitelerinin İncelenmesi. Journal of the Institute of Science and Technology, 14(1), 284-293. https://doi.org/10.21597/jist.1356630
AMA Kılıç M, Aydın AC, Maali M, Sagiroglu M. Çarpık Eksenli Standart Çelik Profillerin Eğilme Kapasitelerinin İncelenmesi. J. Inst. Sci. and Tech. March 2024;14(1):284-293. doi:10.21597/jist.1356630
Chicago Kılıç, Mahmut, Abdulkadir Cuneyt Aydın, Mahyar Maali, and Merve Sagiroglu. “Çarpık Eksenli Standart Çelik Profillerin Eğilme Kapasitelerinin İncelenmesi”. Journal of the Institute of Science and Technology 14, no. 1 (March 2024): 284-93. https://doi.org/10.21597/jist.1356630.
EndNote Kılıç M, Aydın AC, Maali M, Sagiroglu M (March 1, 2024) Çarpık Eksenli Standart Çelik Profillerin Eğilme Kapasitelerinin İncelenmesi. Journal of the Institute of Science and Technology 14 1 284–293.
IEEE M. Kılıç, A. C. Aydın, M. Maali, and M. Sagiroglu, “Çarpık Eksenli Standart Çelik Profillerin Eğilme Kapasitelerinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 14, no. 1, pp. 284–293, 2024, doi: 10.21597/jist.1356630.
ISNAD Kılıç, Mahmut et al. “Çarpık Eksenli Standart Çelik Profillerin Eğilme Kapasitelerinin İncelenmesi”. Journal of the Institute of Science and Technology 14/1 (March 2024), 284-293. https://doi.org/10.21597/jist.1356630.
JAMA Kılıç M, Aydın AC, Maali M, Sagiroglu M. Çarpık Eksenli Standart Çelik Profillerin Eğilme Kapasitelerinin İncelenmesi. J. Inst. Sci. and Tech. 2024;14:284–293.
MLA Kılıç, Mahmut et al. “Çarpık Eksenli Standart Çelik Profillerin Eğilme Kapasitelerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 14, no. 1, 2024, pp. 284-93, doi:10.21597/jist.1356630.
Vancouver Kılıç M, Aydın AC, Maali M, Sagiroglu M. Çarpık Eksenli Standart Çelik Profillerin Eğilme Kapasitelerinin İncelenmesi. J. Inst. Sci. and Tech. 2024;14(1):284-93.