Research Article
BibTex RIS Cite

Synthesis, Characterization, and Catalytic Performance Investigation of Rhodium-Loaded UiO-67 for the Hydrolysis of Methylamine Borane

Year 2025, Volume: 15 Issue: 4, 1444 - 1453
https://doi.org/10.21597/jist.1728011

Abstract

In this study, the catalytic performance of a novel material with high activity and reusability in the catalytic decomposition of methylamine borane (MeAB) is presented. The rhodium(0)-loaded UiO-67 solid-supported catalyst (Rh@UiO-67) was prepared using the wet impregnation and reduction method. The synthesized Rh@UiO-67 catalyst was characterized by various spectroscopic and microscopic techniques, including ICP-OES, XRD, XPS, FE-SEM, and SEM-EDX. The catalytic activity of Rh@UiO-67 in the complete decomposition of methylamine borane (MeAB) was investigated under ambient conditions (50 °C, open air). The results demonstrated that the catalyst achieved 100% conversion with a high turnover frequency (TOF) of 149.49 min⁻¹. These findings indicate that Rh@UiO-67 is an efficient and reusable catalyst for the complete decomposition of MeAB.

Project Number

1919B012223312

References

  • Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602–627.
  • Akbayrak, S., Gençtürk, S., Morkan, İ., & Özkar, S. (2014). Rhodium (0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane. RSC Advances, 4(26), 13742–13748.
  • Alinezhad, H., Tarahomi, M., Maleki, B., & Amiri, A. (2019). SO₃H‐functionalized nano‐MGO‐D‐NH₂: Synthesis, characterization and application for one‐pot synthesis of pyrano [2,3‐d] pyrimidinone and tetrahydrobenzo [b] pyran derivatives in aqueous media. Applied Organometallic Chemistry, 33(3), e4661.
  • Angı, O. S., Murathan, H. B., Özkan, G., & Özkan, G. (2022). Non-linear kinetic analysis of catalytic hydrolysis of ethylenediamine bisborane with nano-structured Pd/TiO₂ catalyst. International Journal of Hydrogen Energy, 47(95), 40430–40444.
  • Baguc, I. B., Ertaş, I. E., Yurderi, M., Bulut, A., Zahmakiran, M., & Kaya, M. (2018). Nanocrystalline metal organic framework (MIL-101) stabilized copper nanoparticles: Highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane. Inorganica Chimica Acta, 483, 431–439.
  • Baguc, I. B., Yurderi, M., Bulut, A., Celebi, M., Kanberoglu, G. S., Zahmakiran, M., ... & Baysal, A. (2019). Cobalt nanoparticles supported on alumina nanofibers (Co/Al₂O₃): Cost-effective catalytic system for the hydrolysis of methylamine borane. International Journal of Hydrogen Energy, 44(53), 28441–28450.
  • Gulcan, M., & Karataş, Y. (2017). Synthesized polyvidone-stabilized Rh (0) nanoparticles catalyzed the hydrolytic dehydrogenation of methylamine-borane in ambient conditions. New Journal of Chemistry, 41(20), 11839–11845.
  • Hong, Y., Peng, J., Sun, Z., Yu, Z., Wang, A., Wang, Y., ... & Sun, L. X. (2020). Transition metal oxodiperoxo complex modified metal-organic frameworks as catalysts for the selective oxidation of cyclohexane. Materials, 13(4), 829.
  • Kanat, M., Karataş, Y., Gülcan, M., & Anıl, B. (2018). Preparation and detailed characterization of zirconia nanopowder supported rhodium (0) nanoparticles for hydrogen production from the methanolysis of methylamine-borane in room conditions. International Journal of Hydrogen Energy, 43(50), 22548–22556.
  • Karataş, Y., & Rüzgar, A. (2023). Poli (N-vinil-2-pirolidon) ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması. Journal of the Institute of Science and Technology, 13(2), 1142–1154.
  • Karataş, Y., Kuyuldar, E., Acidereli, H., Gulcan, M., & Sen, F. (2019). Polypyrrole-multi walled carbon nanotube hybrid material supported Pt NPs for hydrogen evolution from the hydrolysis of MeAB at mild conditions. Scientific Reports, 9(1), 18553.
  • Li, Q., Du, J., Chai, J., Han, N., Zhang, W., & Tang, B. (2021). Vanadium metaphosphate V(PO₃)₃ derived from V‐MOF as a novel anode for lithium‐ion batteries. ChemistrySelect, 6(31), 8150–8157.
  • Liu, M., Peng, Y., Chen, W., Cao, S., Chen, S., Meng, F. L., ... & Xu, Q. (2024). Metal-organic frameworks for carbon-neutral catalysis: State of the art, challenges, and opportunities. Coordination Chemistry Reviews, 506, 215726.
  • Olabi, A. G., Abdelghafar, A. A., Baroutaji, A., Sayed, E. T., Alami, A. H., Rezk, H., & Abdelkareem, M. A. (2021). Large-scale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy, 46(45), 23498–23528.
  • Özgür, D. Ö., Şimşek, T., Özkan, G., Akkuş, M. S., & Özkan, G. (2018). The hydrolysis of ammonia borane by using Amberlyst-15 supported catalysts for hydrogen generation. International Journal of Hydrogen Energy, 43(23), 10765–10772.
  • Pan, Y., Abazari, R., Tahir, B., Sanati, S., Zheng, Y., Tahir, M., & Gao, J. (2024). Iron-based metal–organic frameworks and their derived materials for photocatalytic and photoelectrocatalytic reactions. Coordination Chemistry Reviews, 499, 215538.
  • Rakap, M., & Özkar, S. (2009). Intrazeolite cobalt (0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Applied Catalysis B: Environmental, 91(1–2), 21–29.
  • Rasheed, T., & Anwar, M. T. (2023). Metal organic frameworks as self-sacrificing modalities for potential environmental catalysis and energy applications: Challenges and perspectives. Coordination Chemistry Reviews, 480, 215011.
  • Rüzgar, A., Yurderi, M., Karataş, Y., Gülcan, M., & Zahmakiran, M. (2024). Synthesis and characterization of a nanocatalyst consisting of tungsten (VI) oxide and ruthenium for potential use in the hydrogen generation via hydrolysis of methylamine-borane. Materials Chemistry and Physics, 328, 129944.
  • Salomon, W., Roch-Marchal, C., Mialane, P., Rouschmeyer, P., Serre, C., Haouas, M., ... & Dolbecq, A. (2015). Immobilization of polyoxometalates in the Zr-based metal organic framework UiO-67. Chemical Communications, 51(14), 2972–2975.
  • Shen, J., Yang, L., Hu, K., Luo, W., & Cheng, G. (2015). Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage. International Journal of Hydrogen Energy, 40(2), 1062–1070.
  • Shen, Q., Lu, Z., Bi, F., Zhang, D., Li, L., Zhang, X., ... & Wu, M. (2023). Regulating electronic metal-support interaction by synthetic methods to enhance the toluene degradation over Pt/Co₃O₄ catalysts. Separation and Purification Technology, 325, 124707.
  • Sinigaglia, T., Lewiski, F., Martins, M. E. S., & Siluk, J. C. M. (2017). Production, storage, fuel stations of hydrogen and its utilization in automotive applications – A review. International Journal of Hydrogen Energy, 42(39), 24597–24611.
  • Staubitz, A., Sloan, M. E., Robertson, A. P., Friedrich, A., Schneider, S., Gates, P. J., ... & Manners, I. (2010). Catalytic dehydrocoupling/dehydrogenation of N-methylamine-borane and ammonia-borane: Synthesis and characterization of high molecular weight polyaminoboranes. Journal of the American Chemical Society, 132(38), 13332–13345.
  • Stephens, F. H., Pons, V., & Baker, R. T. (2007). Ammonia–borane: The hydrogen source par excellence?. *Dalton Transactions

Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi

Year 2025, Volume: 15 Issue: 4, 1444 - 1453
https://doi.org/10.21597/jist.1728011

Abstract

Bu çalışmada, metilamin boran (MeAB) katalitik bozunma reaksiyonunda yüksek aktivite ve tekrar kullanılabilirlik özellikleriyle öne çıkan yeni bir malzemenin katalitik performansı açıklanmaktadır. Rodyum(0) yüklü UiO-67 katı destekli katalizör (Rh@UiO-67), ıslak emdirme ve indirgeme yöntemiyle hazırlanmıştır. Hazırlanan Rh@UiO-67 katalizörü, ICP-OES, P-XRD, XPS, FE-SEM ve SEM-EDX gibi çeşitli spektroskopik ve mikroskobik teknikler kullanılarak karakterize edilmiştir. Rh@UiO-67 katalizörünün, metilamin boran (MeAB) bileşiğinin tam katalitik bozunma reaksiyonu üzerindeki etkinliği 25 °C’de ve açık hava koşullarında incelenmiştir. Yapılan çalışmalar, katalizörün %100 dönüşüm sağlayarak 149.49 dk⁻¹ gibi yüksek bir çevrim frekansı (TOF) sergilediğini göstermiştir. Bu sonuçlar, Rh@UiO-67'nin MeAB’nin bozunmasında etkili ve tekrar kullanılabilir bir katalizör olduğunu ortaya koymaktadır.

Supporting Institution

TÜBİTAK

Project Number

1919B012223312

Thanks

TÜBİTAK 2209/A Üniversite Öğrencileri Araştırma Projeleri Destek Programına 1919B012223312 Nolu projeye verdikleri destek için teşekkür ederiz.

References

  • Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602–627.
  • Akbayrak, S., Gençtürk, S., Morkan, İ., & Özkar, S. (2014). Rhodium (0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane. RSC Advances, 4(26), 13742–13748.
  • Alinezhad, H., Tarahomi, M., Maleki, B., & Amiri, A. (2019). SO₃H‐functionalized nano‐MGO‐D‐NH₂: Synthesis, characterization and application for one‐pot synthesis of pyrano [2,3‐d] pyrimidinone and tetrahydrobenzo [b] pyran derivatives in aqueous media. Applied Organometallic Chemistry, 33(3), e4661.
  • Angı, O. S., Murathan, H. B., Özkan, G., & Özkan, G. (2022). Non-linear kinetic analysis of catalytic hydrolysis of ethylenediamine bisborane with nano-structured Pd/TiO₂ catalyst. International Journal of Hydrogen Energy, 47(95), 40430–40444.
  • Baguc, I. B., Ertaş, I. E., Yurderi, M., Bulut, A., Zahmakiran, M., & Kaya, M. (2018). Nanocrystalline metal organic framework (MIL-101) stabilized copper nanoparticles: Highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane. Inorganica Chimica Acta, 483, 431–439.
  • Baguc, I. B., Yurderi, M., Bulut, A., Celebi, M., Kanberoglu, G. S., Zahmakiran, M., ... & Baysal, A. (2019). Cobalt nanoparticles supported on alumina nanofibers (Co/Al₂O₃): Cost-effective catalytic system for the hydrolysis of methylamine borane. International Journal of Hydrogen Energy, 44(53), 28441–28450.
  • Gulcan, M., & Karataş, Y. (2017). Synthesized polyvidone-stabilized Rh (0) nanoparticles catalyzed the hydrolytic dehydrogenation of methylamine-borane in ambient conditions. New Journal of Chemistry, 41(20), 11839–11845.
  • Hong, Y., Peng, J., Sun, Z., Yu, Z., Wang, A., Wang, Y., ... & Sun, L. X. (2020). Transition metal oxodiperoxo complex modified metal-organic frameworks as catalysts for the selective oxidation of cyclohexane. Materials, 13(4), 829.
  • Kanat, M., Karataş, Y., Gülcan, M., & Anıl, B. (2018). Preparation and detailed characterization of zirconia nanopowder supported rhodium (0) nanoparticles for hydrogen production from the methanolysis of methylamine-borane in room conditions. International Journal of Hydrogen Energy, 43(50), 22548–22556.
  • Karataş, Y., & Rüzgar, A. (2023). Poli (N-vinil-2-pirolidon) ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması. Journal of the Institute of Science and Technology, 13(2), 1142–1154.
  • Karataş, Y., Kuyuldar, E., Acidereli, H., Gulcan, M., & Sen, F. (2019). Polypyrrole-multi walled carbon nanotube hybrid material supported Pt NPs for hydrogen evolution from the hydrolysis of MeAB at mild conditions. Scientific Reports, 9(1), 18553.
  • Li, Q., Du, J., Chai, J., Han, N., Zhang, W., & Tang, B. (2021). Vanadium metaphosphate V(PO₃)₃ derived from V‐MOF as a novel anode for lithium‐ion batteries. ChemistrySelect, 6(31), 8150–8157.
  • Liu, M., Peng, Y., Chen, W., Cao, S., Chen, S., Meng, F. L., ... & Xu, Q. (2024). Metal-organic frameworks for carbon-neutral catalysis: State of the art, challenges, and opportunities. Coordination Chemistry Reviews, 506, 215726.
  • Olabi, A. G., Abdelghafar, A. A., Baroutaji, A., Sayed, E. T., Alami, A. H., Rezk, H., & Abdelkareem, M. A. (2021). Large-scale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy, 46(45), 23498–23528.
  • Özgür, D. Ö., Şimşek, T., Özkan, G., Akkuş, M. S., & Özkan, G. (2018). The hydrolysis of ammonia borane by using Amberlyst-15 supported catalysts for hydrogen generation. International Journal of Hydrogen Energy, 43(23), 10765–10772.
  • Pan, Y., Abazari, R., Tahir, B., Sanati, S., Zheng, Y., Tahir, M., & Gao, J. (2024). Iron-based metal–organic frameworks and their derived materials for photocatalytic and photoelectrocatalytic reactions. Coordination Chemistry Reviews, 499, 215538.
  • Rakap, M., & Özkar, S. (2009). Intrazeolite cobalt (0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Applied Catalysis B: Environmental, 91(1–2), 21–29.
  • Rasheed, T., & Anwar, M. T. (2023). Metal organic frameworks as self-sacrificing modalities for potential environmental catalysis and energy applications: Challenges and perspectives. Coordination Chemistry Reviews, 480, 215011.
  • Rüzgar, A., Yurderi, M., Karataş, Y., Gülcan, M., & Zahmakiran, M. (2024). Synthesis and characterization of a nanocatalyst consisting of tungsten (VI) oxide and ruthenium for potential use in the hydrogen generation via hydrolysis of methylamine-borane. Materials Chemistry and Physics, 328, 129944.
  • Salomon, W., Roch-Marchal, C., Mialane, P., Rouschmeyer, P., Serre, C., Haouas, M., ... & Dolbecq, A. (2015). Immobilization of polyoxometalates in the Zr-based metal organic framework UiO-67. Chemical Communications, 51(14), 2972–2975.
  • Shen, J., Yang, L., Hu, K., Luo, W., & Cheng, G. (2015). Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage. International Journal of Hydrogen Energy, 40(2), 1062–1070.
  • Shen, Q., Lu, Z., Bi, F., Zhang, D., Li, L., Zhang, X., ... & Wu, M. (2023). Regulating electronic metal-support interaction by synthetic methods to enhance the toluene degradation over Pt/Co₃O₄ catalysts. Separation and Purification Technology, 325, 124707.
  • Sinigaglia, T., Lewiski, F., Martins, M. E. S., & Siluk, J. C. M. (2017). Production, storage, fuel stations of hydrogen and its utilization in automotive applications – A review. International Journal of Hydrogen Energy, 42(39), 24597–24611.
  • Staubitz, A., Sloan, M. E., Robertson, A. P., Friedrich, A., Schneider, S., Gates, P. J., ... & Manners, I. (2010). Catalytic dehydrocoupling/dehydrogenation of N-methylamine-borane and ammonia-borane: Synthesis and characterization of high molecular weight polyaminoboranes. Journal of the American Chemical Society, 132(38), 13332–13345.
  • Stephens, F. H., Pons, V., & Baker, R. T. (2007). Ammonia–borane: The hydrogen source par excellence?. *Dalton Transactions
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Catalytic Activity
Journal Section Research Article
Authors

Fatma Nur Mandıralı This is me 0009-0008-1663-5955

Ahmet Bulut 0000-0002-1697-8623

Project Number 1919B012223312
Early Pub Date November 27, 2025
Publication Date November 27, 2025
Submission Date June 28, 2025
Acceptance Date July 8, 2025
Published in Issue Year 2025 Volume: 15 Issue: 4

Cite

APA Mandıralı, F. N., & Bulut, A. (2025). Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi. Journal of the Institute of Science and Technology, 15(4), 1444-1453. https://doi.org/10.21597/jist.1728011
AMA Mandıralı FN, Bulut A. Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi. J. Inst. Sci. and Tech. November 2025;15(4):1444-1453. doi:10.21597/jist.1728011
Chicago Mandıralı, Fatma Nur, and Ahmet Bulut. “Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu Ve Katalitik Performansının İncelenmesi”. Journal of the Institute of Science and Technology 15, no. 4 (November 2025): 1444-53. https://doi.org/10.21597/jist.1728011.
EndNote Mandıralı FN, Bulut A (November 1, 2025) Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi. Journal of the Institute of Science and Technology 15 4 1444–1453.
IEEE F. N. Mandıralı and A. Bulut, “Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi”, J. Inst. Sci. and Tech., vol. 15, no. 4, pp. 1444–1453, 2025, doi: 10.21597/jist.1728011.
ISNAD Mandıralı, Fatma Nur - Bulut, Ahmet. “Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu Ve Katalitik Performansının İncelenmesi”. Journal of the Institute of Science and Technology 15/4 (November2025), 1444-1453. https://doi.org/10.21597/jist.1728011.
JAMA Mandıralı FN, Bulut A. Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi. J. Inst. Sci. and Tech. 2025;15:1444–1453.
MLA Mandıralı, Fatma Nur and Ahmet Bulut. “Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu Ve Katalitik Performansının İncelenmesi”. Journal of the Institute of Science and Technology, vol. 15, no. 4, 2025, pp. 1444-53, doi:10.21597/jist.1728011.
Vancouver Mandıralı FN, Bulut A. Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi. J. Inst. Sci. and Tech. 2025;15(4):1444-53.