Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis, Characterization, and Catalytic Performance Investigation of Rhodium-Loaded UiO-67 for the Hydrolysis of Methylamine Borane

Yıl 2025, Cilt: 15 Sayı: 4, 1444 - 1453
https://doi.org/10.21597/jist.1728011

Öz

In this study, the catalytic performance of a novel material with high activity and reusability in the catalytic decomposition of methylamine borane (MeAB) is presented. The rhodium(0)-loaded UiO-67 solid-supported catalyst (Rh@UiO-67) was prepared using the wet impregnation and reduction method. The synthesized Rh@UiO-67 catalyst was characterized by various spectroscopic and microscopic techniques, including ICP-OES, XRD, XPS, FE-SEM, and SEM-EDX. The catalytic activity of Rh@UiO-67 in the complete decomposition of methylamine borane (MeAB) was investigated under ambient conditions (50 °C, open air). The results demonstrated that the catalyst achieved 100% conversion with a high turnover frequency (TOF) of 149.49 min⁻¹. These findings indicate that Rh@UiO-67 is an efficient and reusable catalyst for the complete decomposition of MeAB.

Proje Numarası

1919B012223312

Kaynakça

  • Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602–627.
  • Akbayrak, S., Gençtürk, S., Morkan, İ., & Özkar, S. (2014). Rhodium (0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane. RSC Advances, 4(26), 13742–13748.
  • Alinezhad, H., Tarahomi, M., Maleki, B., & Amiri, A. (2019). SO₃H‐functionalized nano‐MGO‐D‐NH₂: Synthesis, characterization and application for one‐pot synthesis of pyrano [2,3‐d] pyrimidinone and tetrahydrobenzo [b] pyran derivatives in aqueous media. Applied Organometallic Chemistry, 33(3), e4661.
  • Angı, O. S., Murathan, H. B., Özkan, G., & Özkan, G. (2022). Non-linear kinetic analysis of catalytic hydrolysis of ethylenediamine bisborane with nano-structured Pd/TiO₂ catalyst. International Journal of Hydrogen Energy, 47(95), 40430–40444.
  • Baguc, I. B., Ertaş, I. E., Yurderi, M., Bulut, A., Zahmakiran, M., & Kaya, M. (2018). Nanocrystalline metal organic framework (MIL-101) stabilized copper nanoparticles: Highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane. Inorganica Chimica Acta, 483, 431–439.
  • Baguc, I. B., Yurderi, M., Bulut, A., Celebi, M., Kanberoglu, G. S., Zahmakiran, M., ... & Baysal, A. (2019). Cobalt nanoparticles supported on alumina nanofibers (Co/Al₂O₃): Cost-effective catalytic system for the hydrolysis of methylamine borane. International Journal of Hydrogen Energy, 44(53), 28441–28450.
  • Gulcan, M., & Karataş, Y. (2017). Synthesized polyvidone-stabilized Rh (0) nanoparticles catalyzed the hydrolytic dehydrogenation of methylamine-borane in ambient conditions. New Journal of Chemistry, 41(20), 11839–11845.
  • Hong, Y., Peng, J., Sun, Z., Yu, Z., Wang, A., Wang, Y., ... & Sun, L. X. (2020). Transition metal oxodiperoxo complex modified metal-organic frameworks as catalysts for the selective oxidation of cyclohexane. Materials, 13(4), 829.
  • Kanat, M., Karataş, Y., Gülcan, M., & Anıl, B. (2018). Preparation and detailed characterization of zirconia nanopowder supported rhodium (0) nanoparticles for hydrogen production from the methanolysis of methylamine-borane in room conditions. International Journal of Hydrogen Energy, 43(50), 22548–22556.
  • Karataş, Y., & Rüzgar, A. (2023). Poli (N-vinil-2-pirolidon) ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması. Journal of the Institute of Science and Technology, 13(2), 1142–1154.
  • Karataş, Y., Kuyuldar, E., Acidereli, H., Gulcan, M., & Sen, F. (2019). Polypyrrole-multi walled carbon nanotube hybrid material supported Pt NPs for hydrogen evolution from the hydrolysis of MeAB at mild conditions. Scientific Reports, 9(1), 18553.
  • Li, Q., Du, J., Chai, J., Han, N., Zhang, W., & Tang, B. (2021). Vanadium metaphosphate V(PO₃)₃ derived from V‐MOF as a novel anode for lithium‐ion batteries. ChemistrySelect, 6(31), 8150–8157.
  • Liu, M., Peng, Y., Chen, W., Cao, S., Chen, S., Meng, F. L., ... & Xu, Q. (2024). Metal-organic frameworks for carbon-neutral catalysis: State of the art, challenges, and opportunities. Coordination Chemistry Reviews, 506, 215726.
  • Olabi, A. G., Abdelghafar, A. A., Baroutaji, A., Sayed, E. T., Alami, A. H., Rezk, H., & Abdelkareem, M. A. (2021). Large-scale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy, 46(45), 23498–23528.
  • Özgür, D. Ö., Şimşek, T., Özkan, G., Akkuş, M. S., & Özkan, G. (2018). The hydrolysis of ammonia borane by using Amberlyst-15 supported catalysts for hydrogen generation. International Journal of Hydrogen Energy, 43(23), 10765–10772.
  • Pan, Y., Abazari, R., Tahir, B., Sanati, S., Zheng, Y., Tahir, M., & Gao, J. (2024). Iron-based metal–organic frameworks and their derived materials for photocatalytic and photoelectrocatalytic reactions. Coordination Chemistry Reviews, 499, 215538.
  • Rakap, M., & Özkar, S. (2009). Intrazeolite cobalt (0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Applied Catalysis B: Environmental, 91(1–2), 21–29.
  • Rasheed, T., & Anwar, M. T. (2023). Metal organic frameworks as self-sacrificing modalities for potential environmental catalysis and energy applications: Challenges and perspectives. Coordination Chemistry Reviews, 480, 215011.
  • Rüzgar, A., Yurderi, M., Karataş, Y., Gülcan, M., & Zahmakiran, M. (2024). Synthesis and characterization of a nanocatalyst consisting of tungsten (VI) oxide and ruthenium for potential use in the hydrogen generation via hydrolysis of methylamine-borane. Materials Chemistry and Physics, 328, 129944.
  • Salomon, W., Roch-Marchal, C., Mialane, P., Rouschmeyer, P., Serre, C., Haouas, M., ... & Dolbecq, A. (2015). Immobilization of polyoxometalates in the Zr-based metal organic framework UiO-67. Chemical Communications, 51(14), 2972–2975.
  • Shen, J., Yang, L., Hu, K., Luo, W., & Cheng, G. (2015). Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage. International Journal of Hydrogen Energy, 40(2), 1062–1070.
  • Shen, Q., Lu, Z., Bi, F., Zhang, D., Li, L., Zhang, X., ... & Wu, M. (2023). Regulating electronic metal-support interaction by synthetic methods to enhance the toluene degradation over Pt/Co₃O₄ catalysts. Separation and Purification Technology, 325, 124707.
  • Sinigaglia, T., Lewiski, F., Martins, M. E. S., & Siluk, J. C. M. (2017). Production, storage, fuel stations of hydrogen and its utilization in automotive applications – A review. International Journal of Hydrogen Energy, 42(39), 24597–24611.
  • Staubitz, A., Sloan, M. E., Robertson, A. P., Friedrich, A., Schneider, S., Gates, P. J., ... & Manners, I. (2010). Catalytic dehydrocoupling/dehydrogenation of N-methylamine-borane and ammonia-borane: Synthesis and characterization of high molecular weight polyaminoboranes. Journal of the American Chemical Society, 132(38), 13332–13345.
  • Stephens, F. H., Pons, V., & Baker, R. T. (2007). Ammonia–borane: The hydrogen source par excellence?. *Dalton Transactions

Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi

Yıl 2025, Cilt: 15 Sayı: 4, 1444 - 1453
https://doi.org/10.21597/jist.1728011

Öz

Bu çalışmada, metilamin boran (MeAB) katalitik bozunma reaksiyonunda yüksek aktivite ve tekrar kullanılabilirlik özellikleriyle öne çıkan yeni bir malzemenin katalitik performansı açıklanmaktadır. Rodyum(0) yüklü UiO-67 katı destekli katalizör (Rh@UiO-67), ıslak emdirme ve indirgeme yöntemiyle hazırlanmıştır. Hazırlanan Rh@UiO-67 katalizörü, ICP-OES, P-XRD, XPS, FE-SEM ve SEM-EDX gibi çeşitli spektroskopik ve mikroskobik teknikler kullanılarak karakterize edilmiştir. Rh@UiO-67 katalizörünün, metilamin boran (MeAB) bileşiğinin tam katalitik bozunma reaksiyonu üzerindeki etkinliği 25 °C’de ve açık hava koşullarında incelenmiştir. Yapılan çalışmalar, katalizörün %100 dönüşüm sağlayarak 149.49 dk⁻¹ gibi yüksek bir çevrim frekansı (TOF) sergilediğini göstermiştir. Bu sonuçlar, Rh@UiO-67'nin MeAB’nin bozunmasında etkili ve tekrar kullanılabilir bir katalizör olduğunu ortaya koymaktadır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B012223312

Teşekkür

TÜBİTAK 2209/A Üniversite Öğrencileri Araştırma Projeleri Destek Programına 1919B012223312 Nolu projeye verdikleri destek için teşekkür ederiz.

Kaynakça

  • Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602–627.
  • Akbayrak, S., Gençtürk, S., Morkan, İ., & Özkar, S. (2014). Rhodium (0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane. RSC Advances, 4(26), 13742–13748.
  • Alinezhad, H., Tarahomi, M., Maleki, B., & Amiri, A. (2019). SO₃H‐functionalized nano‐MGO‐D‐NH₂: Synthesis, characterization and application for one‐pot synthesis of pyrano [2,3‐d] pyrimidinone and tetrahydrobenzo [b] pyran derivatives in aqueous media. Applied Organometallic Chemistry, 33(3), e4661.
  • Angı, O. S., Murathan, H. B., Özkan, G., & Özkan, G. (2022). Non-linear kinetic analysis of catalytic hydrolysis of ethylenediamine bisborane with nano-structured Pd/TiO₂ catalyst. International Journal of Hydrogen Energy, 47(95), 40430–40444.
  • Baguc, I. B., Ertaş, I. E., Yurderi, M., Bulut, A., Zahmakiran, M., & Kaya, M. (2018). Nanocrystalline metal organic framework (MIL-101) stabilized copper nanoparticles: Highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane. Inorganica Chimica Acta, 483, 431–439.
  • Baguc, I. B., Yurderi, M., Bulut, A., Celebi, M., Kanberoglu, G. S., Zahmakiran, M., ... & Baysal, A. (2019). Cobalt nanoparticles supported on alumina nanofibers (Co/Al₂O₃): Cost-effective catalytic system for the hydrolysis of methylamine borane. International Journal of Hydrogen Energy, 44(53), 28441–28450.
  • Gulcan, M., & Karataş, Y. (2017). Synthesized polyvidone-stabilized Rh (0) nanoparticles catalyzed the hydrolytic dehydrogenation of methylamine-borane in ambient conditions. New Journal of Chemistry, 41(20), 11839–11845.
  • Hong, Y., Peng, J., Sun, Z., Yu, Z., Wang, A., Wang, Y., ... & Sun, L. X. (2020). Transition metal oxodiperoxo complex modified metal-organic frameworks as catalysts for the selective oxidation of cyclohexane. Materials, 13(4), 829.
  • Kanat, M., Karataş, Y., Gülcan, M., & Anıl, B. (2018). Preparation and detailed characterization of zirconia nanopowder supported rhodium (0) nanoparticles for hydrogen production from the methanolysis of methylamine-borane in room conditions. International Journal of Hydrogen Energy, 43(50), 22548–22556.
  • Karataş, Y., & Rüzgar, A. (2023). Poli (N-vinil-2-pirolidon) ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması. Journal of the Institute of Science and Technology, 13(2), 1142–1154.
  • Karataş, Y., Kuyuldar, E., Acidereli, H., Gulcan, M., & Sen, F. (2019). Polypyrrole-multi walled carbon nanotube hybrid material supported Pt NPs for hydrogen evolution from the hydrolysis of MeAB at mild conditions. Scientific Reports, 9(1), 18553.
  • Li, Q., Du, J., Chai, J., Han, N., Zhang, W., & Tang, B. (2021). Vanadium metaphosphate V(PO₃)₃ derived from V‐MOF as a novel anode for lithium‐ion batteries. ChemistrySelect, 6(31), 8150–8157.
  • Liu, M., Peng, Y., Chen, W., Cao, S., Chen, S., Meng, F. L., ... & Xu, Q. (2024). Metal-organic frameworks for carbon-neutral catalysis: State of the art, challenges, and opportunities. Coordination Chemistry Reviews, 506, 215726.
  • Olabi, A. G., Abdelghafar, A. A., Baroutaji, A., Sayed, E. T., Alami, A. H., Rezk, H., & Abdelkareem, M. A. (2021). Large-scale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy, 46(45), 23498–23528.
  • Özgür, D. Ö., Şimşek, T., Özkan, G., Akkuş, M. S., & Özkan, G. (2018). The hydrolysis of ammonia borane by using Amberlyst-15 supported catalysts for hydrogen generation. International Journal of Hydrogen Energy, 43(23), 10765–10772.
  • Pan, Y., Abazari, R., Tahir, B., Sanati, S., Zheng, Y., Tahir, M., & Gao, J. (2024). Iron-based metal–organic frameworks and their derived materials for photocatalytic and photoelectrocatalytic reactions. Coordination Chemistry Reviews, 499, 215538.
  • Rakap, M., & Özkar, S. (2009). Intrazeolite cobalt (0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Applied Catalysis B: Environmental, 91(1–2), 21–29.
  • Rasheed, T., & Anwar, M. T. (2023). Metal organic frameworks as self-sacrificing modalities for potential environmental catalysis and energy applications: Challenges and perspectives. Coordination Chemistry Reviews, 480, 215011.
  • Rüzgar, A., Yurderi, M., Karataş, Y., Gülcan, M., & Zahmakiran, M. (2024). Synthesis and characterization of a nanocatalyst consisting of tungsten (VI) oxide and ruthenium for potential use in the hydrogen generation via hydrolysis of methylamine-borane. Materials Chemistry and Physics, 328, 129944.
  • Salomon, W., Roch-Marchal, C., Mialane, P., Rouschmeyer, P., Serre, C., Haouas, M., ... & Dolbecq, A. (2015). Immobilization of polyoxometalates in the Zr-based metal organic framework UiO-67. Chemical Communications, 51(14), 2972–2975.
  • Shen, J., Yang, L., Hu, K., Luo, W., & Cheng, G. (2015). Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage. International Journal of Hydrogen Energy, 40(2), 1062–1070.
  • Shen, Q., Lu, Z., Bi, F., Zhang, D., Li, L., Zhang, X., ... & Wu, M. (2023). Regulating electronic metal-support interaction by synthetic methods to enhance the toluene degradation over Pt/Co₃O₄ catalysts. Separation and Purification Technology, 325, 124707.
  • Sinigaglia, T., Lewiski, F., Martins, M. E. S., & Siluk, J. C. M. (2017). Production, storage, fuel stations of hydrogen and its utilization in automotive applications – A review. International Journal of Hydrogen Energy, 42(39), 24597–24611.
  • Staubitz, A., Sloan, M. E., Robertson, A. P., Friedrich, A., Schneider, S., Gates, P. J., ... & Manners, I. (2010). Catalytic dehydrocoupling/dehydrogenation of N-methylamine-borane and ammonia-borane: Synthesis and characterization of high molecular weight polyaminoboranes. Journal of the American Chemical Society, 132(38), 13332–13345.
  • Stephens, F. H., Pons, V., & Baker, R. T. (2007). Ammonia–borane: The hydrogen source par excellence?. *Dalton Transactions
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Katalitik Aktivite
Bölüm Araştırma Makalesi
Yazarlar

Fatma Nur Mandıralı Bu kişi benim 0009-0008-1663-5955

Ahmet Bulut 0000-0002-1697-8623

Proje Numarası 1919B012223312
Erken Görünüm Tarihi 27 Kasım 2025
Yayımlanma Tarihi 27 Kasım 2025
Gönderilme Tarihi 28 Haziran 2025
Kabul Tarihi 8 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA Mandıralı, F. N., & Bulut, A. (2025). Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi. Journal of the Institute of Science and Technology, 15(4), 1444-1453. https://doi.org/10.21597/jist.1728011
AMA Mandıralı FN, Bulut A. Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Kasım 2025;15(4):1444-1453. doi:10.21597/jist.1728011
Chicago Mandıralı, Fatma Nur, ve Ahmet Bulut. “Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi”. Journal of the Institute of Science and Technology 15, sy. 4 (Kasım 2025): 1444-53. https://doi.org/10.21597/jist.1728011.
EndNote Mandıralı FN, Bulut A (01 Kasım 2025) Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi. Journal of the Institute of Science and Technology 15 4 1444–1453.
IEEE F. N. Mandıralı ve A. Bulut, “Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 4, ss. 1444–1453, 2025, doi: 10.21597/jist.1728011.
ISNAD Mandıralı, Fatma Nur - Bulut, Ahmet. “Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi”. Journal of the Institute of Science and Technology 15/4 (Kasım2025), 1444-1453. https://doi.org/10.21597/jist.1728011.
JAMA Mandıralı FN, Bulut A. Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:1444–1453.
MLA Mandıralı, Fatma Nur ve Ahmet Bulut. “Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi”. Journal of the Institute of Science and Technology, c. 15, sy. 4, 2025, ss. 1444-53, doi:10.21597/jist.1728011.
Vancouver Mandıralı FN, Bulut A. Metilamin Boranın Hidroliz Tepkimesi İçin Rodyum Yüklü UiO-67’nin Sentezi, Karakterizasyonu ve Katalitik Performansının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(4):1444-53.