[ 1] F. Stummel, K. Hainer, Introduction to Numerical Analysis, Scottish Academic Press, Edinburgh, 1980.
[ 2] L. Kohaupt, Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices, J. Math. Sci.
Model., 2(2) (2019), 82-98.
[ 3] L. Kohaupt, Solution of the vibration problem $M\ddot{y}+B\dot{y}+K y = 0,
\, y(t_0)=y_0, \, \dot{y}(t_0)=\dot{y}_0$ {\em without} the
hypothesis $B M^{-1} K = K M^{-1} B$ or $B = \alpha M + \beta K$},
Appl. Math. Sci., 2(41) (2008), 1989-2024.
[ 4] A.Czornik, P. Jurga´s, Some properties of the spectral radius of a set of matrices, Int. J. Appl. Math. Sci., 16(2)(2006)183-188.
[ 5] L. Kohaupt, Solution of the matrix eigenvalue problem $V A + A^{\ast} V =
\mu V$ with applications to the study of free linear systems, J. Comp. Appl. Math.,
213(1) (2008), 142-165.
[ 6] L. Kohaupt, Spectral properties of the matrix $C^{-1} B$
with positive definite matrix $C$ and Hermitian $B$ as well as applications, J. Appl. Math. Comput., 50
(2016), 389-416.
[ 7] T.J. Laffey, H. ˘Smigoc, Nonnegatively realizable spectra with two positive eigenvalues, Linear Multilinear Algebra, 58(7-8) (2010), 1053-1069.
[ 8] P. Lancaster, Theory of Matrices, Academic Press, New York and London, 1969.
[ 9] P.C. M¨uller, W.O. Schiehlen, Linear Vibrations, Martinus Nijhoff Publishers, Dordrecht Boston Lancaster, 1985.
[10] S.V. Savchenko, On the change in the spectral properties of a matrix under perturbations of sufficiently low rank, Funct. Anal. Appl., 38(1) (2004),
69-71.
[11] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer, New York Heidelberg, Third Edition, 2010.
[12] L. Kohaupt, Construction of a biorthogonal system of principal vectors of the matrices $A$ and $A^{\ast}$ with applications to the
initial value problem $\dot{x}=A\,x, \; x(t_0)=x_0$, J. Comput. Math. Optim., 3(3) (2007), 163-192.
[13] L. Kohaupt, Further spectral properties of the matrix$C^{-1} B$
with positive definite $C$ and Hermitian $B$ applied to wider classes of matrices
$C$ and $B$, J.
Appl. Math. Comput., 52 (2016), 215-243.
[14] L. Kohaupt, Biorthogonalization of the principal vectors for the matrices $A$ and $A^{\ast}$ with application to the computation of the
explicit representation of the solution $x(t)$ of $\dot{x}=A\,x, \;
x(t_0)=x_0$, Appl. Math. Sci., 2(20) (2008), 961-974.
Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices
Year 2020,
Volume: 3 Issue: 2, 55 - 75, 31.08.2020
In the present paper, formulas for the Rayleigh-quotient representation of the real parts, imaginary
parts, and moduli of the eigenvalues of general matrices are obtained that resemble corresponding
formulas for the eigenvalues of self-adjoint matrices. These formulas are of interest in Linear Algebra
and in the theory of linear dynamical systems. The key point is that a weighted scalar product is
used that is defined by means of a special positive definite matrix. As applications, one obtains
convexity properties of newly-defined numerical ranges of a matrix. A numerical example underpins
the theoretical findings.
[ 1] F. Stummel, K. Hainer, Introduction to Numerical Analysis, Scottish Academic Press, Edinburgh, 1980.
[ 2] L. Kohaupt, Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices, J. Math. Sci.
Model., 2(2) (2019), 82-98.
[ 3] L. Kohaupt, Solution of the vibration problem $M\ddot{y}+B\dot{y}+K y = 0,
\, y(t_0)=y_0, \, \dot{y}(t_0)=\dot{y}_0$ {\em without} the
hypothesis $B M^{-1} K = K M^{-1} B$ or $B = \alpha M + \beta K$},
Appl. Math. Sci., 2(41) (2008), 1989-2024.
[ 4] A.Czornik, P. Jurga´s, Some properties of the spectral radius of a set of matrices, Int. J. Appl. Math. Sci., 16(2)(2006)183-188.
[ 5] L. Kohaupt, Solution of the matrix eigenvalue problem $V A + A^{\ast} V =
\mu V$ with applications to the study of free linear systems, J. Comp. Appl. Math.,
213(1) (2008), 142-165.
[ 6] L. Kohaupt, Spectral properties of the matrix $C^{-1} B$
with positive definite matrix $C$ and Hermitian $B$ as well as applications, J. Appl. Math. Comput., 50
(2016), 389-416.
[ 7] T.J. Laffey, H. ˘Smigoc, Nonnegatively realizable spectra with two positive eigenvalues, Linear Multilinear Algebra, 58(7-8) (2010), 1053-1069.
[ 8] P. Lancaster, Theory of Matrices, Academic Press, New York and London, 1969.
[ 9] P.C. M¨uller, W.O. Schiehlen, Linear Vibrations, Martinus Nijhoff Publishers, Dordrecht Boston Lancaster, 1985.
[10] S.V. Savchenko, On the change in the spectral properties of a matrix under perturbations of sufficiently low rank, Funct. Anal. Appl., 38(1) (2004),
69-71.
[11] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer, New York Heidelberg, Third Edition, 2010.
[12] L. Kohaupt, Construction of a biorthogonal system of principal vectors of the matrices $A$ and $A^{\ast}$ with applications to the
initial value problem $\dot{x}=A\,x, \; x(t_0)=x_0$, J. Comput. Math. Optim., 3(3) (2007), 163-192.
[13] L. Kohaupt, Further spectral properties of the matrix$C^{-1} B$
with positive definite $C$ and Hermitian $B$ applied to wider classes of matrices
$C$ and $B$, J.
Appl. Math. Comput., 52 (2016), 215-243.
[14] L. Kohaupt, Biorthogonalization of the principal vectors for the matrices $A$ and $A^{\ast}$ with application to the computation of the
explicit representation of the solution $x(t)$ of $\dot{x}=A\,x, \;
x(t_0)=x_0$, Appl. Math. Sci., 2(20) (2008), 961-974.
Kohaupt, L. (2020). Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Journal of Mathematical Sciences and Modelling, 3(2), 55-75. https://doi.org/10.33187/jmsm.669216
AMA
Kohaupt L. Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Journal of Mathematical Sciences and Modelling. August 2020;3(2):55-75. doi:10.33187/jmsm.669216
Chicago
Kohaupt, Ludwig. “Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”. Journal of Mathematical Sciences and Modelling 3, no. 2 (August 2020): 55-75. https://doi.org/10.33187/jmsm.669216.
EndNote
Kohaupt L (August 1, 2020) Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Journal of Mathematical Sciences and Modelling 3 2 55–75.
IEEE
L. Kohaupt, “Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”, Journal of Mathematical Sciences and Modelling, vol. 3, no. 2, pp. 55–75, 2020, doi: 10.33187/jmsm.669216.
ISNAD
Kohaupt, Ludwig. “Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”. Journal of Mathematical Sciences and Modelling 3/2 (August 2020), 55-75. https://doi.org/10.33187/jmsm.669216.
JAMA
Kohaupt L. Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Journal of Mathematical Sciences and Modelling. 2020;3:55–75.
MLA
Kohaupt, Ludwig. “Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”. Journal of Mathematical Sciences and Modelling, vol. 3, no. 2, 2020, pp. 55-75, doi:10.33187/jmsm.669216.
Vancouver
Kohaupt L. Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Journal of Mathematical Sciences and Modelling. 2020;3(2):55-7.