Research Article
BibTex RIS Cite

Exploring the effects of Pb substitution on the structure, magnetic, and magnetocaloric properties of La1.96Pb0.04NiMnO6

Year 2024, Volume: 02, 8 - 16, 31.07.2024

Abstract

Providing energy demands while caring for the environment and dealing with a decrease in natural energy resources are major challenges of our time. The greenhouse gas emissions worsen the situation in terms of health risks and put pres-sure on scientists to urgently seek solutions. As green technologies offer hopeful solutions to these demanding problems, they are getting attention. Refrigeration's noteworthy energy consumption makes it a prime target for efficiency devel-opments compared to other technologies. To address concerns about energy consumption, researchers are exploring improvements in conventional cooling technologies. Magnetic cooling systems impress with their energy efficiency, affordability, and green technology, making them strong candidates for replacing current cooling systems. Research on MC emphasizes the importance of selecting coolants with high magnetic entropy. These materials experience a larger temperature variation under a low external magnetic field, making them more efficient. Magnetic refrigeration holds great potential, but research efforts continue to optimize the materials for even better performance, as shown by the literature. Growing on current research, this study analyses the characteristic features of La1.96Pb0.04NiMnO6 double perovskite material. The sol-gel technique was used to synthesize the compound, followed by X-ray Diffraction analy-sis at room temperature to determine its crystal structure. Additionally, we used Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy to investigate the compound's morphology and elemental composition. Tem-perature-dependent magnetization and magnetic field-dependent magnetization analyses were taken to investigate the magnetic behavior of the compound. Temperature-dependent magnetization analysis revealed that a magnetic phase transition from the ferromagnetic to the paramagnetic state around 121.43 K and under a 5 T magnetic field change, the magnetic entropy change was calculated to be 0.28 Jkg-1K-1. The results of this study, particularly the phase transi-tion temperature and magnetic entropy change values, offer valuable insights into the potential of our sample as a candidate for magnetic refrigeration. Further optimization of these parameters could solidify its candidacy.

References

  • 1. Tassou SA, Ge Y, Hadawey A, Marriott D. Ener-gy consumption and conservation in food retailing. Applied Thermal Engineering. 2011;31(2):147-56.
  • 2. Gschneidner Jr KA, Pecharsky VK, Pecharsky AO, Zimm CB. Recent Developments in Magnetic Refrigeration. Materials Science Forum. 1999;315-317:69-76.
  • 3. Ayaş AO, Akyol M, Ekicibil A. Structural and magnetic properties with large reversible magnetoca-loric effect in (La 1-x Pr x ) 0.85 Ag 0.15 MnO 3 (0.0 ≤ x ≤ 0.5) compounds. Philosophical Magazine. 2016;96(10):922-37.
  • 4. Gschneidner KA, Pecharsky VK. Recent devel-opments in magnetic refrigeration. 1996:209-21.
  • 5. Phan M-H, Yu S-C. Review of the magnetocaloric effect in manganite materials. Journal of Magnetism and Magnetic Materials. 2007;308(2):325-40.
  • 6. Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. 2011;23(7):821-42.
  • 7. Zhang Y, Tian Y, Zhang Z, Jia Y, Zhang B, Jiang M, et al. Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferro-magnetic Gd2MgTiO6 double perovskite oxide. Acta Materialia. 2022;226:117669.
  • 8. Gschneidner KA, Pecharsky VK. Magnetocaloric Materials. Annual Review of Materials Science. 2000;30(1):387-429.
  • 9. Ayaş AO, Kılıç Çetin S, Akyol M, Akça G, Ekici-bil A. Effect of B site partial Ru substitution on struc-tural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1-xRuxO3 (x = 0.0, 0.1 and 0.2) perov-skite system. Journal of Molecular Structure. 2020;1200:127120-.
  • 10. Ayaş AO, Çetin SK, Akça G, Akyol M, Ekicibil A. Magnetic refrigeration: Current progress in magne-tocaloric properties of perovskite manganite materi-als. Materials Today Communications. 2023;35:105988.
  • 11. Kandemir A, Akça G, Kılıç Çetin S, Ayaş AO, Akyol M, Ekicibil A. Effects of Ca substitution on magnetic and magnetocaloric properties in PrBa1-xCaxMn2O6 system. Journal of Solid State Chemistry. 2023;324:124086.
  • 12. Ram NR, Prakash M, Naresh U, Kumar NS, Sar-mash TS, Subbarao T, et al. Review on Magnetocalor-ic Effect and Materials. Journal of Superconductivity and Novel Magnetism. 2018;31(7):1971-9.
  • 13. Franco V, Blázquez JS, Ipus JJ, Law JY, More-no-Ramírez LM, Conde A. Magnetocaloric effect: From materials research to refrigeration devices. Progress in Materials Science. 2018;93:112-232.
  • 14. Lyubina J. Magnetocaloric materials for energy efficient cooling. Journal of Physics D: Applied Phys-ics. 2017;50(5):53002-.
  • 15. Pecharsky VK, Gschneidner K. A, Jr. Giant Magnetocaloric Effect in Gd5(Si2Ge2). Physical Re-view Letters. 1997;78(23):4494-7.
  • 16. Kim YK, Cho YW. Magnetic transition of (MnFe)yP1−xAsx prepared by mechanochemical re-action and post-annealing. Journal of Alloys and Compounds. 2005;394(1-2):19-23.
  • 17. Shah IA, ul Hassan N, keremu A, Riaz S, Naseem S, Xu F, et al. Realization of Magnetostructural Tran-sition and Magnetocaloric Properties of Ni–Mn–Mo–Sn Heusler Alloys. Journal of Superconductivity and Novel Magnetism. 2018;32(3):659-65.
  • 18. Lyubina J, Schafer R, Martin N, Schultz L, Gutfleisch O. Novel design of La(Fe,Si)13 alloys to-wards high magnetic refrigeration performance. Adv Mater. 2010;22(33):3735-9.
  • 19. Barman A, Kar-Narayan S, Mukherjee D. Calor-ic Effects in Perovskite Oxides. Advanced Materials Interfaces. 2019;6(15):1900291-.
  • 20. Zhong W, Au C-T, Du Y-W. Review of magneto-caloric effect in perovskite-type oxides. Chinese Phys-ics B. 2013;22(5):57501-.
  • 21. Srivastava SK, Samantaray B, Bora T, Ravi S. Magnetic and electrical properties of Mn-substituted (La0.85Ag0.15)CoO3 compounds. Journal of Mag-netism and Magnetic Materials. 2019;474:605-12.
  • 22. Srivastava SK, Ravi S. Magnetic properties of Nd1−xAgxMnO3compounds. Journal of Physics: Condensed Matter. 2008;20(50).
  • 23. Srivastava SK, Kar M, Ravi S, Mishra PK, Babu PD. Magnetic properties of electron-doped Y1−xCexMnO3 compounds. Journal of Magnetism and Magnetic Materials. 2008;320(19):2382-6.
  • 24. Krishna Murthy J, Devi Chandrasekhar K, Ma-hana S, Topwal D, Venimadhav A. Giant magnetoca-loric effect in Gd2NiMnO6and Gd2CoMnO6ferromagnetic insulators. Journal of Physics D: Applied Physics. 2015;48(35):355001-.
  • 25. Moon JY, Kim MK, Choi YJ, Lee N. Giant Ani-sotropic Magnetocaloric Effect in Double-perovskite Gd2CoMnO6 Single Crystals. Scientific Reports. 2017;7(1):16099-.
  • 26. Moon JY, Kim MK, Oh DG, Kim JH, Shin HJ, Choi YJ, et al. Anisotropic magnetic properties and giant rotating magnetocaloric effect in dou-ble-perovskite Tb2CoMnO6. Physical Review B. 2018;98(17):174424-.
  • 27. Ho TA, Thanh TD, Thang PD, Lee JS, Phan TL, Yu SC. Magnetic Properties and Magnetocaloric Ef-fect in Pb-Doped La0.9Dy0.1MnO3 Manganites. IEEE Transactions on Magnetics. 2014;50(6):1-4.
  • 28. Ayaş AO. Structural and magnetic properties with reversible magnetocaloric effect in PrSr 1– x Pb x Mn 2 O 6 (0.1 ≤ x ≤ 0.3) double perovskite manganite structures. Philosophical Magazine. 2018;98(30):2782-96.
  • 29. Rodríguez-Carvajal J. Recent advances in mag-netic structure determination by neutron powder dif-fraction. Physica B: Condensed Matter. 1993;192(1):55-69.
  • 30. Rietveld H. A profile refinement method for nu-clear and magnetic structures. Journal of Applied Crystallography. 1969;2(2):65-71.
  • 31. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 1976;32(5):751-67.
  • 32. Soylu Koc N, Altintas SP, Mahamdioua N, Ter-zioglu C. Cation size mismatch effect in (La1-yREy)1.4Ca1.6Mn2O7 perovskite manganites. Journal of Alloys and Compounds. 2019;797:471-6.
  • 33. Venkataiah G, Prasad V, Venugopal Reddy P. Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. Journal of Alloys and Compounds. 2007;429(1):1-9.
  • 34. Debye P, Scherrer P. Interference on inordinate orientated particles in roentgen light. Physikalische Zeitschrift. 1916;17:277-83.
  • 35. Debye P, Scherrer P. Interference on inordinate orientated particles in x-ray light. III. Physikalische Zeitschrift. 1917;18:291-301.
  • 36. Tokura Y. Critical features of colossal magneto-resistive manganites. Reports on Progress in Physics. 2006;69(3):797-851.
  • 37. Koc R, Anderson HU. Liquid phase sintering of LaCrO3. Journal of the European Ceramic Society. 1992;9(4):285-92.
  • 38. Debnath JC, Zeng R, Kim JH, Shamba P, Chen DP, Dou SX. Effect of frozen spin on the magnetoca-loric property of La0.7Ca0.3CoO3 polycrystalline and single crystal samples. Journal of Alloys and Compounds. 2012;510(1):125-33.
  • 39. Kılıç Çetin S, Acet M, Ekicibil A. Effect of Pr-substitution on the structural, magnetic and mag-netocaloric properties of (La1-xPrx)0.67Pb0.33MnO3 (0.0 ≤ x ≤ 0.3) manganites. Journal of Alloys and Compounds. 2017;727:1253-62.
  • 40. Taşarkuyu E, Coşkun A, Irmak AE, Aktürk S, Ünlü G, Samancıoğlu Y, et al. Effect of high tempera-ture sintering on the structural and the magnetic properties of La1.4Ca1.6Mn2O7. Journal of Alloys and Compounds. 2011;509(9):3717-22.
  • 41. Yang J, Song WH, Ma YQ, Zhang RL, Zhao BC, Sheng ZG, et al. Structural, magnetic, and transport properties in the Pr-doped manganites La0.9−xPrxTe0.1MnO3 (0⩽x⩽0.9). Physical Review B. 2004;70(14):144421-.
  • 42. Rana DS, Kuberkar DG, Malik SK. Field-induced abrupt change in magnetization of the manganite compounds (LaR)0.45(CaSr)0.55MnO3 (R =Eu and Tb). Physical Review B. 2006;73(6):064407.
  • 43. Bourouina M, Krichene A, Chniba Boudjada N, Boujelben W. Structural disorder effect on the struc-tural and magnetic properties of Pr0.4Re0.1Sr0.5−yBayMnO3 manganites (Re = Pr, Sm, Eu, Gd, Dy and Ho). 2017;43(15):12311-20.
  • 44. Mugiraneza S, Hallas AM. Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Communications Physics. 2022;5(1):95.
  • 45. Phong PT, Dang NV, Bau LV, An NM, Lee I-J. Landau mean-field analysis and estimation of the spontaneous magnetization from magnetic entropy change in La0.7Sr0.3MnO3 and La0.7Sr0.3Mn0.95Ti0.05O3. Journal of Alloys and Compounds. 2017;698(C):451-9.
  • 46. Banerjee BK. On a generalised approach to first and second order magnetic transitions. Physics Letters. 1964;12(1):16-7.
Year 2024, Volume: 02, 8 - 16, 31.07.2024

Abstract

References

  • 1. Tassou SA, Ge Y, Hadawey A, Marriott D. Ener-gy consumption and conservation in food retailing. Applied Thermal Engineering. 2011;31(2):147-56.
  • 2. Gschneidner Jr KA, Pecharsky VK, Pecharsky AO, Zimm CB. Recent Developments in Magnetic Refrigeration. Materials Science Forum. 1999;315-317:69-76.
  • 3. Ayaş AO, Akyol M, Ekicibil A. Structural and magnetic properties with large reversible magnetoca-loric effect in (La 1-x Pr x ) 0.85 Ag 0.15 MnO 3 (0.0 ≤ x ≤ 0.5) compounds. Philosophical Magazine. 2016;96(10):922-37.
  • 4. Gschneidner KA, Pecharsky VK. Recent devel-opments in magnetic refrigeration. 1996:209-21.
  • 5. Phan M-H, Yu S-C. Review of the magnetocaloric effect in manganite materials. Journal of Magnetism and Magnetic Materials. 2007;308(2):325-40.
  • 6. Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. 2011;23(7):821-42.
  • 7. Zhang Y, Tian Y, Zhang Z, Jia Y, Zhang B, Jiang M, et al. Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferro-magnetic Gd2MgTiO6 double perovskite oxide. Acta Materialia. 2022;226:117669.
  • 8. Gschneidner KA, Pecharsky VK. Magnetocaloric Materials. Annual Review of Materials Science. 2000;30(1):387-429.
  • 9. Ayaş AO, Kılıç Çetin S, Akyol M, Akça G, Ekici-bil A. Effect of B site partial Ru substitution on struc-tural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1-xRuxO3 (x = 0.0, 0.1 and 0.2) perov-skite system. Journal of Molecular Structure. 2020;1200:127120-.
  • 10. Ayaş AO, Çetin SK, Akça G, Akyol M, Ekicibil A. Magnetic refrigeration: Current progress in magne-tocaloric properties of perovskite manganite materi-als. Materials Today Communications. 2023;35:105988.
  • 11. Kandemir A, Akça G, Kılıç Çetin S, Ayaş AO, Akyol M, Ekicibil A. Effects of Ca substitution on magnetic and magnetocaloric properties in PrBa1-xCaxMn2O6 system. Journal of Solid State Chemistry. 2023;324:124086.
  • 12. Ram NR, Prakash M, Naresh U, Kumar NS, Sar-mash TS, Subbarao T, et al. Review on Magnetocalor-ic Effect and Materials. Journal of Superconductivity and Novel Magnetism. 2018;31(7):1971-9.
  • 13. Franco V, Blázquez JS, Ipus JJ, Law JY, More-no-Ramírez LM, Conde A. Magnetocaloric effect: From materials research to refrigeration devices. Progress in Materials Science. 2018;93:112-232.
  • 14. Lyubina J. Magnetocaloric materials for energy efficient cooling. Journal of Physics D: Applied Phys-ics. 2017;50(5):53002-.
  • 15. Pecharsky VK, Gschneidner K. A, Jr. Giant Magnetocaloric Effect in Gd5(Si2Ge2). Physical Re-view Letters. 1997;78(23):4494-7.
  • 16. Kim YK, Cho YW. Magnetic transition of (MnFe)yP1−xAsx prepared by mechanochemical re-action and post-annealing. Journal of Alloys and Compounds. 2005;394(1-2):19-23.
  • 17. Shah IA, ul Hassan N, keremu A, Riaz S, Naseem S, Xu F, et al. Realization of Magnetostructural Tran-sition and Magnetocaloric Properties of Ni–Mn–Mo–Sn Heusler Alloys. Journal of Superconductivity and Novel Magnetism. 2018;32(3):659-65.
  • 18. Lyubina J, Schafer R, Martin N, Schultz L, Gutfleisch O. Novel design of La(Fe,Si)13 alloys to-wards high magnetic refrigeration performance. Adv Mater. 2010;22(33):3735-9.
  • 19. Barman A, Kar-Narayan S, Mukherjee D. Calor-ic Effects in Perovskite Oxides. Advanced Materials Interfaces. 2019;6(15):1900291-.
  • 20. Zhong W, Au C-T, Du Y-W. Review of magneto-caloric effect in perovskite-type oxides. Chinese Phys-ics B. 2013;22(5):57501-.
  • 21. Srivastava SK, Samantaray B, Bora T, Ravi S. Magnetic and electrical properties of Mn-substituted (La0.85Ag0.15)CoO3 compounds. Journal of Mag-netism and Magnetic Materials. 2019;474:605-12.
  • 22. Srivastava SK, Ravi S. Magnetic properties of Nd1−xAgxMnO3compounds. Journal of Physics: Condensed Matter. 2008;20(50).
  • 23. Srivastava SK, Kar M, Ravi S, Mishra PK, Babu PD. Magnetic properties of electron-doped Y1−xCexMnO3 compounds. Journal of Magnetism and Magnetic Materials. 2008;320(19):2382-6.
  • 24. Krishna Murthy J, Devi Chandrasekhar K, Ma-hana S, Topwal D, Venimadhav A. Giant magnetoca-loric effect in Gd2NiMnO6and Gd2CoMnO6ferromagnetic insulators. Journal of Physics D: Applied Physics. 2015;48(35):355001-.
  • 25. Moon JY, Kim MK, Choi YJ, Lee N. Giant Ani-sotropic Magnetocaloric Effect in Double-perovskite Gd2CoMnO6 Single Crystals. Scientific Reports. 2017;7(1):16099-.
  • 26. Moon JY, Kim MK, Oh DG, Kim JH, Shin HJ, Choi YJ, et al. Anisotropic magnetic properties and giant rotating magnetocaloric effect in dou-ble-perovskite Tb2CoMnO6. Physical Review B. 2018;98(17):174424-.
  • 27. Ho TA, Thanh TD, Thang PD, Lee JS, Phan TL, Yu SC. Magnetic Properties and Magnetocaloric Ef-fect in Pb-Doped La0.9Dy0.1MnO3 Manganites. IEEE Transactions on Magnetics. 2014;50(6):1-4.
  • 28. Ayaş AO. Structural and magnetic properties with reversible magnetocaloric effect in PrSr 1– x Pb x Mn 2 O 6 (0.1 ≤ x ≤ 0.3) double perovskite manganite structures. Philosophical Magazine. 2018;98(30):2782-96.
  • 29. Rodríguez-Carvajal J. Recent advances in mag-netic structure determination by neutron powder dif-fraction. Physica B: Condensed Matter. 1993;192(1):55-69.
  • 30. Rietveld H. A profile refinement method for nu-clear and magnetic structures. Journal of Applied Crystallography. 1969;2(2):65-71.
  • 31. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 1976;32(5):751-67.
  • 32. Soylu Koc N, Altintas SP, Mahamdioua N, Ter-zioglu C. Cation size mismatch effect in (La1-yREy)1.4Ca1.6Mn2O7 perovskite manganites. Journal of Alloys and Compounds. 2019;797:471-6.
  • 33. Venkataiah G, Prasad V, Venugopal Reddy P. Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. Journal of Alloys and Compounds. 2007;429(1):1-9.
  • 34. Debye P, Scherrer P. Interference on inordinate orientated particles in roentgen light. Physikalische Zeitschrift. 1916;17:277-83.
  • 35. Debye P, Scherrer P. Interference on inordinate orientated particles in x-ray light. III. Physikalische Zeitschrift. 1917;18:291-301.
  • 36. Tokura Y. Critical features of colossal magneto-resistive manganites. Reports on Progress in Physics. 2006;69(3):797-851.
  • 37. Koc R, Anderson HU. Liquid phase sintering of LaCrO3. Journal of the European Ceramic Society. 1992;9(4):285-92.
  • 38. Debnath JC, Zeng R, Kim JH, Shamba P, Chen DP, Dou SX. Effect of frozen spin on the magnetoca-loric property of La0.7Ca0.3CoO3 polycrystalline and single crystal samples. Journal of Alloys and Compounds. 2012;510(1):125-33.
  • 39. Kılıç Çetin S, Acet M, Ekicibil A. Effect of Pr-substitution on the structural, magnetic and mag-netocaloric properties of (La1-xPrx)0.67Pb0.33MnO3 (0.0 ≤ x ≤ 0.3) manganites. Journal of Alloys and Compounds. 2017;727:1253-62.
  • 40. Taşarkuyu E, Coşkun A, Irmak AE, Aktürk S, Ünlü G, Samancıoğlu Y, et al. Effect of high tempera-ture sintering on the structural and the magnetic properties of La1.4Ca1.6Mn2O7. Journal of Alloys and Compounds. 2011;509(9):3717-22.
  • 41. Yang J, Song WH, Ma YQ, Zhang RL, Zhao BC, Sheng ZG, et al. Structural, magnetic, and transport properties in the Pr-doped manganites La0.9−xPrxTe0.1MnO3 (0⩽x⩽0.9). Physical Review B. 2004;70(14):144421-.
  • 42. Rana DS, Kuberkar DG, Malik SK. Field-induced abrupt change in magnetization of the manganite compounds (LaR)0.45(CaSr)0.55MnO3 (R =Eu and Tb). Physical Review B. 2006;73(6):064407.
  • 43. Bourouina M, Krichene A, Chniba Boudjada N, Boujelben W. Structural disorder effect on the struc-tural and magnetic properties of Pr0.4Re0.1Sr0.5−yBayMnO3 manganites (Re = Pr, Sm, Eu, Gd, Dy and Ho). 2017;43(15):12311-20.
  • 44. Mugiraneza S, Hallas AM. Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Communications Physics. 2022;5(1):95.
  • 45. Phong PT, Dang NV, Bau LV, An NM, Lee I-J. Landau mean-field analysis and estimation of the spontaneous magnetization from magnetic entropy change in La0.7Sr0.3MnO3 and La0.7Sr0.3Mn0.95Ti0.05O3. Journal of Alloys and Compounds. 2017;698(C):451-9.
  • 46. Banerjee BK. On a generalised approach to first and second order magnetic transitions. Physics Letters. 1964;12(1):16-7.
There are 46 citations in total.

Details

Primary Language English
Subjects Material Physics, Condensed Matter Physics (Other)
Journal Section Research Articles
Authors

Arda Kandemir 0000-0002-9439-0366

Ali Osman Ayaş 0000-0002-6186-8191

Ahmet Ekicibil 0000-0003-3071-0444

Publication Date July 31, 2024
Submission Date June 24, 2024
Acceptance Date July 27, 2024
Published in Issue Year 2024 Volume: 02

Cite

Vancouver Kandemir A, Ayaş AO, Ekicibil A. Exploring the effects of Pb substitution on the structure, magnetic, and magnetocaloric properties of La1.96Pb0.04NiMnO6. JOEBS. 2024;02:8-16.



Google Scholar                            Academic Resource Index                         Creative Commons Attribution 4.0 International License