Research Article
BibTex RIS Cite

Effect of NaCl-induced Salt Stress on Germination and Initial Seedling Growth of Lotus corniculatus L. cv. 'Leo'

Year 2024, , 24 - 34, 30.01.2024
https://doi.org/10.33462/jotaf.1222317

Abstract

Lotus corniculatus L. is one of the agronomically and economically important perennial legume forage species with moderately salt-tolerant. It is well known that even the cultivars of the same species in plants have different responses in salinity. However, studies on the salt response of L. corniculatus and its cultivars, which are more advantageous than other forage crops such as white clover (Trifolium repens) and alfalfa (Medicago sativa L.), in the use of marginal agricultural lands affected by abiotic stress factors such as salinity, are limited. Under salt stress, the most crucial phases of the plant life cycle that are directly related to the survival of the plant are seed germination, growth, and vigour. Therefore, this study was carried out to determine the germination and growth responses of L. corniculatus cultivar 'Leo', which is known to have higher tannin content than other cultivars, under NaCl-derived salt stress in vitro. For this purpose, L. corniculatus seeds were cultured in MS (Murashige and Skoog/Gamborg) medium containing 0, 40, and 80 mM NaCl for 14 days. Seed germination percentage, mean germination time, germination rate index, shoot-root length, root to shoot length ratio, shoot-root fresh dry weight, shoot-root dry matter, the ratio of root to shoot dry matter, shoot-root water content and seedling vigour index parameters were measured. According to the results of the research, the germination percentage did not change in the applied NaCl treatments, but the germination rate decreased. However, shoot length decreased and root length increased. Although there was no statistically significant change in shoot and root fresh-dry weight, both decreased in 80 mM NaCl treatment. The shoot and root dry matter increased and the water content decreased. Also, the seedling viability index decreased. In 40 mM NaCl treatment, on the other hand, there was an increase in shoot fresh-dry weight, dry matter ratio and seedling viability index with the positive effect of low dose. Within the scope of this study, comprehensive information was presented for L. corniculatus (cultivar 'Leo'), an important forage plant, in terms of germination and seedling growth under salt stress.

References

  • Abdul-Baki, A. A. and Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13: 630-633.
  • Abdul-Qados, A. M. S. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 10: 7-15.
  • Al-Enezi, N. A., Al-Bahrany, A. M. and Al-Khayri, J. M. (2012). Effect of X-irradiation on date palm seed germination and seedling growth. Emirates Journal of Food and Agriculture, 24(5): 415-424.
  • Altuner, F., Oral, E. and Baran, İ. (2022). Determination of the effects of salt (NaCl) stress on germination in some barley (Hordeum vulgare L.) varieties. Journal of Tekirdag Agricultural Faculty, 19(1): 39-50.
  • Antonelli, C. J., Calzadilla, P. I., Campestre, M. P., Escaray, F. J. and Ruiz, O. A. (2021). Contrasting response of two Lotus corniculatus L. accessions to combined waterlogging–saline stress. Plant Biology, 23: 363-374.
  • Azarafshan, M. and Abbaspour, N. (2014). Growth and physiological parameters under salinity stress in Lotus corniculatus. Iranian Journal of Plant Physiology, 4(2): 991-997.
  • Bandeoğlu, E., Eyidoğan, F., Yücel, M. and Öktem, H. A. (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regulation, 42: 69-77.
  • Bao, A. K., Wang, Y. W., Xi, J. J., Liu, C., Zhang, J. L. and Wang, S. M. (2014). Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Functional Plant Biology, 41: 203-214.
  • Bernstein, N. (2013). Effects of Salinity on Root Growth. In: Plant Roots: The Hidden Half, 4th edition, (A. Eshel, T. Beeckman, eds.). CRC. 848 Pages. Boca Raton: CRC Press.
  • Beyaz, B., Kaya, G., Cocu, S. and Sancak, C. (2011). Response of seeds and pollen of Onobrychis viciifolia and Onobrychis oxyodonta var. armena to NaCl stress. Scientia Agricola, 68(4): 477-481.
  • Beyaz, R., Yildiz, M. and Sancak, R. (2018). Morphological and biochemical responses of sainfoin (Onobrychis viciifolia Scop.) ecotypes to salinity. Legume Research, (41): 253-258.
  • Bhattarai, S., Biswas, D., Fu, Y. B. and Biligetu, B. (2020). Morphological, physiological, and genetic responses to salt stress in alfalfa. Agronomy, 10(577): 1-15.
  • Bres, W., Kleiber, T., Markiewicz, B., Mieloszyk, E. and Mieloch, M. (2022). The effect of NaCl stress on the response of lettuce (Lactuca sativa L.). Agronomy, (12) 244: 1-14.
  • Bybordi, A. (2010). The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1): 128-133.
  • Carter, D. L. (1975). Problems of Salinity in Agriculture. Plants in Saline Environments Edited by A Poljakoff-Mayber and J. Gale. Springer-Verlag Berlin Heidelberg Newyork.
  • Chapman, V. J. (1975). The Salinity Problem in General, Its Importance, and Distribution with Special Reference to Natural Halophytes. Plants in Saline Environments Edited by A Poljakoff-Mayber and J. Gale. Springer-Verlag Berlin Heidelberg Newyork.
  • Cheeseman, J. M. (1988). Mechanisms of salinity tolerance in plants. Plant Physiology, 87: 547-550.
  • Cokkızgın, A. (2012). Salinity stress in common bean (Phaseolus vulgaris L.) seed germination. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1): 177-182.
  • Çakmakçı, S. and Dallar, A. (2019). Effects of Different Temperatures and Salt Concentrations on the Germination Of Some Corn Silage Varieties. Journal of Tekirdag Agricultural Faculty, 16(2): 121-132.
  • Dehnavi, A. R., Zahedi, M., Ludwiczak, A., Perez, S. C. and Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(859): 1-15.
  • Dornburg, V., Vashev, B., Turkenburg, W., Wicke, B., Smeets, E., Gaiser, T. and Faaij, A. (2011). The global technical and economic potential of bioenergy from salt-affected soils. Energy & Environmental Science, 4: 2669.
  • Ellis, R. H. and Roberts, E. H. (1980). Towards a Rational Basis for Testing Seed Quality. p. 605-635. In: Hebblethwaite, P.D., ed. Seed Production. Butterworths, England.
  • Gamborg, O. L., Miller, R. A. and Ojima K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50: 151-155.
  • International Seed Testing Association [ISTA] (2003). International Rules for Seed Testing. Bassersdorf, Switzerland.
  • Jaleel, C. A., Gopi, R., Manivannan, P., Kishorekumar, A., Sridharan, R. and Panneerselvam, R. (2007). Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South African Journal of Botany, 73: 190-195.
  • Jiang, P., Cai, F., Zhao, Z.Q., Meng, Y., Gao, L.Y. and Zhao, T. H. (2018). Physiological and dry matter characteristics of spring maize in Northeast China under drought stress. Water, 10(1561): 1-14.
  • Khajeh-Hosseini, M., Powell, A. A. and Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Science and Technology, 31(3): 715-725.
  • Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigour. Crop Science, 2: 176-177.
  • Moss, D. N. and Hoffman, G. J. (1977). Analysis of Crop Salt Tolerance Data, pp. 258-271. In: Shain, I. and Shalhevet, J. (Eds.). Soil Salinity Under İrrigation: Process and Management. Ecological.
  • Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681.
  • Nieman R. H. (1965). Expansion of bean leaves and its suppression by salinity. Plant Physiology, 40: 156–161.
  • Petrović, G., Jovičić, D., Nikolić, Z., Tamindžić, G. and Ignjatov, M. (2016). Comparative study of drought and salt stress effects on germination and seedling growth of pea. Genetika, 48(1): 373–381.
  • Savić, J., Nikolić, R., Banjac, N., Zdravković-Korać, S., Stupar, S., Cingel, A., Ćosić, T., Raspor, M., Smigocki, A. and Ninković, S. (2019). Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L. Journal of Plant Physiology, 243: 1-10.
  • Shokat, S. and Großkinsky, D. K. (2019). Tackling salinity in sustainable agriculture—what developing countries may learn from approaches of the developed world. Sustainability, 11(4558): 1-19.
  • Snedecor, G. W. and Cochran, W. G. (1967). Statistical Methods, 6th ed. Ames, Iowa: Iowa State University Press. p 693.
  • Tarchoune, I., Sgherri, C., Izzo, R., Lachaal, M., Ouerghi, Z. and Navari-Izzo, F. (2010). Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiology and Biochemistry, 48: 772-777.
  • Teakle, N. L., Real, D. and Colmer, T. D. (2006). Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus tenuis. Plant Soil, 289: 369-383.
  • Topçu-Demiroğlu, G. and Özkan, Ş. S. (2016). Effects of salt and drought stresses on germination and seedling growth of sainfoin (Onobrychis viciifolia Scop.). Journal of Agricultural Faculty of Uludag University, 30: 406-409.
  • Uchiya, P., Escaray, F. J., Bilenca, D., Pieckenstain, F., Ruiz, O. A. and Menendez, A. B. (2016). Salt effects on functional traits in model and in economically important Lotus species. Plant Biology, 18: 703-709.
  • Undersander, D., Mertens, D. and Thiex, N. (1993). Forage Analyses. Information Systems Division, National Agricultural Library (United States of America) NAL/USDA, 10301 Baltimore Avenue Beltsville, Md. 2070. http://www.nal.usda.gov.
  • Ünlüsoy, A. G., Yolcu, S., Bor, M., Özdemir, F. nad Türkan, İ. (2023). Activation of photorespiration facilitates Drought Stress Tolerance in Lotus corniculatus. Journal of Plant Growth Regulation, 42: 2088-2101.
  • Wang, D., Sun, Z., Hu, X., Xiong, J., Hu, L., Xu, Y., Tang, Y. and Yanmin, W. (2021). The key regulator LcERF056 enhances salt tolerance by modulating reactive oxygen species-related genes in Lotus corniculatus. BMC Plant Biology, 21(605): 1-13.
  • Wang, L., Shi, J., Zuo, Q., Zheng, W. and Zhu, X. (2012). Optimizing parameters of salinity stress reduction function using the relationship between root-water-uptake and root nitrogen mass of winter wheat. Agricultural Water Management, 104: 142-152.
  • Wang, Y., Xu, Y., Peng, Y., Yan, J., Yan, X., Zhou, Z. and Lin, J. (2019). Cotyledon removal decreases salt tolerance during seedling establishment of Ricinus communis, an oilseed energy crop species. Industrial Crop & Products, 142 (2019): 1-11.
  • Zheng, Y., Jia, A., Ning, T., Xu, J., Li, Z. and Jiang, G. (2008). Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 165: 1455-1465.
  • Zhou, M. L., Ma, J. T., Zhao, Y. M., Wei, Y. H., Tang, Y. X. and Wu, Y. M. (2012). Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene, 506: 10-17.

NaCl Kaynaklı Tuz Stresinin Lotus corniculatus L. cv. 'Leo'nun Çimlenmesi ve İlk Fide Büyümesi Üzerindeki Etkisi

Year 2024, , 24 - 34, 30.01.2024
https://doi.org/10.33462/jotaf.1222317

Abstract

Lotus corniculatus L. orta derecede tuza toleranslı, tarımsal ve ekonomik açıdan önemli çok yıllık baklagil yem türlerinden biridir. Bitkilerde aynı türün çeşitlerinin bile tuzluluğa farklı tepkiler verdiği iyi bilinmektedir. Ancak tuzluluk gibi abiyotik stres faktörlerinden etkilenen marjinal tarım arazilerinin kullanımında ak üçgül (Trifolium repens) ve yonca (Medicago sativa L.) gibi diğer yem bitkilerine göre daha avantajlı olan L. corniculatus ve çeşitlerinin tuz tepkisi üzerine yapılan çalışmalar sınırlıdır. Tuz stresi altında, bitkinin hayatta kalmasıyla doğrudan ilgili olan bitki yaşam döngüsünün en önemli aşamaları tohumların çimlenmesi, büyümesi ve canlılığıdır. Bu nedenle bu çalışma, diğer çeşitlere göre daha yüksek tanen içeriğine sahip olduğu bilinen L. corniculatus çeşidi 'Leo'nun NaCl türevli tuz stresi altındaki in vitro çimlenme ve büyüme tepkilerini belirlemek amacıyla yapılmıştır. Bu amaçla L. corniculatus tohumları 0, 40 ve 80 mM NaCl içeren MS (Murashige ve Skoog/Gamborg) besiyerinde 14 gün kültüre edilmiştir. Tohum çimlenme yüzdesi, ortalama çimlenme süresi, çimlenme oranı indeksi, sürgün-kök uzunluğu, kök-sürgün uzunluğu oranı, sürgün-kök yaş-kuru ağırlığı, sürgün-kök kuru maddesi, kök-sürgün kuru madde oranı, sürgün- kök su içeriği ve fide canlılık indeksi parametreleri ölçülmüştür. Araştırma sonuçlarına göre, uygulanan NaCl uygulamalarında çimlenme yüzdesi değişmemiş ancak çimlenme hızı azalmıştır. Bununla birlikte sürgün uzunluğu azalmış, kök uzunluğu artmıştır. İstatisitiki açıdan sürgün ve kök yaş-kuru ağırlığında önemli bir değişme olmamasına rağmen, 80 mM NaCl uygulamasında her ikisinde de azalış olmuştur. Sürgün ve kök kuru madde oranı artmış su içeriği azalmıştır. Ayrıca, fide canlılık indeksi de azalmıştır. 40 mM NaCl uygulamasında ise düşük doz olumlu etkisi ile sürgün yaş-kuru ağırlık, kuru madde oranı ve fide canlılık indeksinde artış olmuştur. Bu çalışma kapsamında önemli bir yem bitkisi olan L. corniculatus (kültivar 'Leo') için tuz stresi altında çimlenme ve fide gelişimi bakımından kapsamlı bilgi sunulmuştur.

References

  • Abdul-Baki, A. A. and Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13: 630-633.
  • Abdul-Qados, A. M. S. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 10: 7-15.
  • Al-Enezi, N. A., Al-Bahrany, A. M. and Al-Khayri, J. M. (2012). Effect of X-irradiation on date palm seed germination and seedling growth. Emirates Journal of Food and Agriculture, 24(5): 415-424.
  • Altuner, F., Oral, E. and Baran, İ. (2022). Determination of the effects of salt (NaCl) stress on germination in some barley (Hordeum vulgare L.) varieties. Journal of Tekirdag Agricultural Faculty, 19(1): 39-50.
  • Antonelli, C. J., Calzadilla, P. I., Campestre, M. P., Escaray, F. J. and Ruiz, O. A. (2021). Contrasting response of two Lotus corniculatus L. accessions to combined waterlogging–saline stress. Plant Biology, 23: 363-374.
  • Azarafshan, M. and Abbaspour, N. (2014). Growth and physiological parameters under salinity stress in Lotus corniculatus. Iranian Journal of Plant Physiology, 4(2): 991-997.
  • Bandeoğlu, E., Eyidoğan, F., Yücel, M. and Öktem, H. A. (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regulation, 42: 69-77.
  • Bao, A. K., Wang, Y. W., Xi, J. J., Liu, C., Zhang, J. L. and Wang, S. M. (2014). Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Functional Plant Biology, 41: 203-214.
  • Bernstein, N. (2013). Effects of Salinity on Root Growth. In: Plant Roots: The Hidden Half, 4th edition, (A. Eshel, T. Beeckman, eds.). CRC. 848 Pages. Boca Raton: CRC Press.
  • Beyaz, B., Kaya, G., Cocu, S. and Sancak, C. (2011). Response of seeds and pollen of Onobrychis viciifolia and Onobrychis oxyodonta var. armena to NaCl stress. Scientia Agricola, 68(4): 477-481.
  • Beyaz, R., Yildiz, M. and Sancak, R. (2018). Morphological and biochemical responses of sainfoin (Onobrychis viciifolia Scop.) ecotypes to salinity. Legume Research, (41): 253-258.
  • Bhattarai, S., Biswas, D., Fu, Y. B. and Biligetu, B. (2020). Morphological, physiological, and genetic responses to salt stress in alfalfa. Agronomy, 10(577): 1-15.
  • Bres, W., Kleiber, T., Markiewicz, B., Mieloszyk, E. and Mieloch, M. (2022). The effect of NaCl stress on the response of lettuce (Lactuca sativa L.). Agronomy, (12) 244: 1-14.
  • Bybordi, A. (2010). The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1): 128-133.
  • Carter, D. L. (1975). Problems of Salinity in Agriculture. Plants in Saline Environments Edited by A Poljakoff-Mayber and J. Gale. Springer-Verlag Berlin Heidelberg Newyork.
  • Chapman, V. J. (1975). The Salinity Problem in General, Its Importance, and Distribution with Special Reference to Natural Halophytes. Plants in Saline Environments Edited by A Poljakoff-Mayber and J. Gale. Springer-Verlag Berlin Heidelberg Newyork.
  • Cheeseman, J. M. (1988). Mechanisms of salinity tolerance in plants. Plant Physiology, 87: 547-550.
  • Cokkızgın, A. (2012). Salinity stress in common bean (Phaseolus vulgaris L.) seed germination. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1): 177-182.
  • Çakmakçı, S. and Dallar, A. (2019). Effects of Different Temperatures and Salt Concentrations on the Germination Of Some Corn Silage Varieties. Journal of Tekirdag Agricultural Faculty, 16(2): 121-132.
  • Dehnavi, A. R., Zahedi, M., Ludwiczak, A., Perez, S. C. and Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(859): 1-15.
  • Dornburg, V., Vashev, B., Turkenburg, W., Wicke, B., Smeets, E., Gaiser, T. and Faaij, A. (2011). The global technical and economic potential of bioenergy from salt-affected soils. Energy & Environmental Science, 4: 2669.
  • Ellis, R. H. and Roberts, E. H. (1980). Towards a Rational Basis for Testing Seed Quality. p. 605-635. In: Hebblethwaite, P.D., ed. Seed Production. Butterworths, England.
  • Gamborg, O. L., Miller, R. A. and Ojima K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50: 151-155.
  • International Seed Testing Association [ISTA] (2003). International Rules for Seed Testing. Bassersdorf, Switzerland.
  • Jaleel, C. A., Gopi, R., Manivannan, P., Kishorekumar, A., Sridharan, R. and Panneerselvam, R. (2007). Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South African Journal of Botany, 73: 190-195.
  • Jiang, P., Cai, F., Zhao, Z.Q., Meng, Y., Gao, L.Y. and Zhao, T. H. (2018). Physiological and dry matter characteristics of spring maize in Northeast China under drought stress. Water, 10(1561): 1-14.
  • Khajeh-Hosseini, M., Powell, A. A. and Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Science and Technology, 31(3): 715-725.
  • Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigour. Crop Science, 2: 176-177.
  • Moss, D. N. and Hoffman, G. J. (1977). Analysis of Crop Salt Tolerance Data, pp. 258-271. In: Shain, I. and Shalhevet, J. (Eds.). Soil Salinity Under İrrigation: Process and Management. Ecological.
  • Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681.
  • Nieman R. H. (1965). Expansion of bean leaves and its suppression by salinity. Plant Physiology, 40: 156–161.
  • Petrović, G., Jovičić, D., Nikolić, Z., Tamindžić, G. and Ignjatov, M. (2016). Comparative study of drought and salt stress effects on germination and seedling growth of pea. Genetika, 48(1): 373–381.
  • Savić, J., Nikolić, R., Banjac, N., Zdravković-Korać, S., Stupar, S., Cingel, A., Ćosić, T., Raspor, M., Smigocki, A. and Ninković, S. (2019). Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L. Journal of Plant Physiology, 243: 1-10.
  • Shokat, S. and Großkinsky, D. K. (2019). Tackling salinity in sustainable agriculture—what developing countries may learn from approaches of the developed world. Sustainability, 11(4558): 1-19.
  • Snedecor, G. W. and Cochran, W. G. (1967). Statistical Methods, 6th ed. Ames, Iowa: Iowa State University Press. p 693.
  • Tarchoune, I., Sgherri, C., Izzo, R., Lachaal, M., Ouerghi, Z. and Navari-Izzo, F. (2010). Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiology and Biochemistry, 48: 772-777.
  • Teakle, N. L., Real, D. and Colmer, T. D. (2006). Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus tenuis. Plant Soil, 289: 369-383.
  • Topçu-Demiroğlu, G. and Özkan, Ş. S. (2016). Effects of salt and drought stresses on germination and seedling growth of sainfoin (Onobrychis viciifolia Scop.). Journal of Agricultural Faculty of Uludag University, 30: 406-409.
  • Uchiya, P., Escaray, F. J., Bilenca, D., Pieckenstain, F., Ruiz, O. A. and Menendez, A. B. (2016). Salt effects on functional traits in model and in economically important Lotus species. Plant Biology, 18: 703-709.
  • Undersander, D., Mertens, D. and Thiex, N. (1993). Forage Analyses. Information Systems Division, National Agricultural Library (United States of America) NAL/USDA, 10301 Baltimore Avenue Beltsville, Md. 2070. http://www.nal.usda.gov.
  • Ünlüsoy, A. G., Yolcu, S., Bor, M., Özdemir, F. nad Türkan, İ. (2023). Activation of photorespiration facilitates Drought Stress Tolerance in Lotus corniculatus. Journal of Plant Growth Regulation, 42: 2088-2101.
  • Wang, D., Sun, Z., Hu, X., Xiong, J., Hu, L., Xu, Y., Tang, Y. and Yanmin, W. (2021). The key regulator LcERF056 enhances salt tolerance by modulating reactive oxygen species-related genes in Lotus corniculatus. BMC Plant Biology, 21(605): 1-13.
  • Wang, L., Shi, J., Zuo, Q., Zheng, W. and Zhu, X. (2012). Optimizing parameters of salinity stress reduction function using the relationship between root-water-uptake and root nitrogen mass of winter wheat. Agricultural Water Management, 104: 142-152.
  • Wang, Y., Xu, Y., Peng, Y., Yan, J., Yan, X., Zhou, Z. and Lin, J. (2019). Cotyledon removal decreases salt tolerance during seedling establishment of Ricinus communis, an oilseed energy crop species. Industrial Crop & Products, 142 (2019): 1-11.
  • Zheng, Y., Jia, A., Ning, T., Xu, J., Li, Z. and Jiang, G. (2008). Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 165: 1455-1465.
  • Zhou, M. L., Ma, J. T., Zhao, Y. M., Wei, Y. H., Tang, Y. X. and Wu, Y. M. (2012). Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene, 506: 10-17.
There are 46 citations in total.

Details

Primary Language English
Subjects Pasture-Meadow Forage Plants, Field Crops and Pasture Production (Other)
Journal Section Articles
Authors

Ramazan Beyaz 0000-0003-4588-579X

Ahmet Kazankaya 0000-0002-1081-4281

Early Pub Date January 24, 2024
Publication Date January 30, 2024
Submission Date December 21, 2022
Acceptance Date July 10, 2023
Published in Issue Year 2024

Cite

APA Beyaz, R., & Kazankaya, A. (2024). Effect of NaCl-induced Salt Stress on Germination and Initial Seedling Growth of Lotus corniculatus L. cv. ’Leo’. Tekirdağ Ziraat Fakültesi Dergisi, 21(1), 24-34. https://doi.org/10.33462/jotaf.1222317
AMA Beyaz R, Kazankaya A. Effect of NaCl-induced Salt Stress on Germination and Initial Seedling Growth of Lotus corniculatus L. cv. ’Leo’. JOTAF. January 2024;21(1):24-34. doi:10.33462/jotaf.1222317
Chicago Beyaz, Ramazan, and Ahmet Kazankaya. “Effect of NaCl-Induced Salt Stress on Germination and Initial Seedling Growth of Lotus Corniculatus L. Cv. ’Leo’”. Tekirdağ Ziraat Fakültesi Dergisi 21, no. 1 (January 2024): 24-34. https://doi.org/10.33462/jotaf.1222317.
EndNote Beyaz R, Kazankaya A (January 1, 2024) Effect of NaCl-induced Salt Stress on Germination and Initial Seedling Growth of Lotus corniculatus L. cv. ’Leo’. Tekirdağ Ziraat Fakültesi Dergisi 21 1 24–34.
IEEE R. Beyaz and A. Kazankaya, “Effect of NaCl-induced Salt Stress on Germination and Initial Seedling Growth of Lotus corniculatus L. cv. ’Leo’”, JOTAF, vol. 21, no. 1, pp. 24–34, 2024, doi: 10.33462/jotaf.1222317.
ISNAD Beyaz, Ramazan - Kazankaya, Ahmet. “Effect of NaCl-Induced Salt Stress on Germination and Initial Seedling Growth of Lotus Corniculatus L. Cv. ’Leo’”. Tekirdağ Ziraat Fakültesi Dergisi 21/1 (January 2024), 24-34. https://doi.org/10.33462/jotaf.1222317.
JAMA Beyaz R, Kazankaya A. Effect of NaCl-induced Salt Stress on Germination and Initial Seedling Growth of Lotus corniculatus L. cv. ’Leo’. JOTAF. 2024;21:24–34.
MLA Beyaz, Ramazan and Ahmet Kazankaya. “Effect of NaCl-Induced Salt Stress on Germination and Initial Seedling Growth of Lotus Corniculatus L. Cv. ’Leo’”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 21, no. 1, 2024, pp. 24-34, doi:10.33462/jotaf.1222317.
Vancouver Beyaz R, Kazankaya A. Effect of NaCl-induced Salt Stress on Germination and Initial Seedling Growth of Lotus corniculatus L. cv. ’Leo’. JOTAF. 2024;21(1):24-3.