Research Article
BibTex RIS Cite

Siyah Havuç Suyu Atıklarından Selüloz Ekstraksiyon Parametrelerinin Optimizasyonu ve Nanoselüloz Üretimi

Year 2024, , 547 - 560, 13.03.2024
https://doi.org/10.33462/jotaf.1326627

Abstract

Dünya nüfusunun sürekli artış göstermesiyle birlikte, üretim ve tüketim faaliyetleri de hızla artmakta ve sonucunda tarımsal atıklar dünya genelinde büyük miktarlarda birikmektedir. Bu durum, sürdürülebilir üretimi desteklemek amacıyla atık geri dönüşüm süreçlerine olan ihtiyacı da artırmaktadır. Özellikle tarımsal atık miktarının artmasıyla birlikte, atıklardan değerli bileşenlerin geri kazanımı konusunda çeşitli çalışmalar yoğunlaşmıştır. Bu bağlamda, selüloz ve nanoselüloz gibi maddelerin atıklardan geri kazanımı, özellikle gıda sektörü başta olmak üzere birçok sektörde kullanım ve uygulama potansiyeline sahip olduğu için önem taşımaktadır. Siyah havuç suyu atığı da önemli bir tarımsal atık olarak kabul edilmekte ve genellikle doğal renklendirici üretiminde sıklıkla kullanılmaktadır. Renk maddesi üretiminin yanı sıra yüksek selüloz içeriği sebebiyle bu çalışmada siyah havuç suyu atığı, selüloz ve nanoselüloz üretiminde kullanılmıştır. Yanıt Yüzey Yöntemi (Response Surface Method)-Merkezi Tümleşik Tasarım (CCD) yöntemi kullanılarak, selülozun alkali ekstraksiyon koşulları optimize edilmiştir. Bu optimizasyon sürecinde, NaOH konsantrasyonu (%2–12), proses sıcaklığı (25–110 °C) ve proses süresi (60–240 dakika) gibi parametreler dikkate alınarak yanıt olarak selüloz verimi ve beyazlık indeksi seçilmiştir. Bu sayede, farklı parametre kombinasyonlarına karşılık gelen selüloz verimi ve beyazlık indeksi değerleri ile birlikte optimum ekstraksiyon koşulları belirlenmiştir. Selüloz veriminin %22,90±2,48 ve beyazlık indeksinin %60,32±0,07 olduğu siyah havuç suyu atıklarından selülozun alkali ekstraksiyonu için optimum proses parametreleri NaOH konsantrasyonu %7,06; proses sıcaklığı 44,83 °C ve proses süresi 114,21 dk olarak belirlenmiştir. Siyah havuç suyu atıklarından elde edilen selülozdan %25 konsantrasyonda H2SO4 kullanılarak asidik hidroliz ile nanoselüloz üretilmiştir. Nanoselüloz verimi ve beyazlık indeksi sırasıyla %15,76±0,16 ve %58,77±0,26 olarak bulunmuştur. Nanoselülozun ortalama çapı (61±2,89 nm) ve uzunluğu (281±18,50 nm) Atomik Kuvvet Mikroskobu (AFM) ile belirlenmiştir. Fourier Transform Infrared (FTIR) spektroskopisi sonucunda ise selülozik olmayan bileşenlerin uzaklaştırıldığı belirlenmiştir.

References

  • Ağçam, E. and Akyıldız, A. (2015). Effects of Different Solvents And Acid Consantrations On Extraction Of Anthocyanins From Black Carrot Pomace. Gıda, 40(3): 149-156 (In Turkish).
  • Akhtar, S., Rauf, A., Imran, M., Qamar, M., Rıaz, M. and Mubarak, M.S. (2017). Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends in Food Science and Technology, 66: 36-47.
  • Aksoy, M., ÇELİK, A., Mahmut, D. O. K., Yücel, C. and Aydin, K. (2023). Determination of cellulosic bioethanol yield of sweet sorghum genotypes grown under Cukurova Conditions. Journal of Tekirdag Agricultural Faculty, 20(1): 61-70 (In Turkish).
  • Albaş, M. G., Gürbüz, B., Bölük, E., Atik, D. S., Velioglu, M. and Palabiyik, İ. (2022). The effect of lactic acid based propolis addition on the shelf life of fresh strawberry juice. Journal of Tekirdag Agricultural Faculty, 19(4): 788-797 (In Turkish).
  • AOAC (1990). Official Methods of Analysis of the AOAC, Volume 2 (No. Ed. 15), Association of Official Analytical Chemists Inc.
  • Arscott, S. and Tanumihardjo, S. A. (2010). Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Comprehensive Reviews in Food Science and Food Safety, 9(2): 223-239.
  • Behera, S. K., Meena, H., Chakraborty, S. and Meikap, B. C. (2018). Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal, International Journal of Mining Science and Technology, 28(4): 621-629.
  • Borges de Oliveira, F., Bras, J., Pimenta, M. T. B., Aprigio da Silva Curvelo, A. and Belgacem, M. N. (2016). Production of cellulose nanocrystals from sugarcane bagasse fibersand pith. Industrial Crops and Products, 93: 48-57.
  • Börjesson, M. and Westman, G. (2015). Crystalline Nanocellulose — Preparation, Modification, And Properties. 159-191, Cellulose - Fundamental Aspects and Current Trends, Matheus Poletto (Ed.), IntechOpen, England, 284.
  • Cemeroğlu, B. (2013). Food Analysis, Food Technology Association Publications, Ankara (In Turkish). Chirayil, C. J., Joy, J., Mathew, L., Mozetic, M., Koetz, J. and Thomas, S. (2014). Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products, 59: 27-34.
  • Collazo-Bigliardi, S., Ortega-Toro, R. and Boix, A.C. (2018). Isolation and characterization of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 191: 205-215.
  • Davoudpour, Y., Hossain, S., Abdul Khalil, H. P. S., Mohammad Haafiz, M. K., Mohd Ishak, Z. A., Hassan, A. and Sarker, Z. I. (2015). Optimization of high-pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology. Industrial Crops and Products, 74: 381-387.
  • Değermenci, G. D., Değermenci, N., Ayvaoğlu, V., Durmaz, E., Çakır, D. and Akan, E. (2019). Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies. Journal of Cleaner Production, 225: 1220-1229.
  • Demir, D. (2010). Effect of drying and various pre-drying blanching treatments on antioxidant compounds from black carrot. (MSc. Thesis) Selçuk University Institute of Science, Konya, Türkiye.
  • Dinand, E., Chanzy, H. and Vignon, M. R. (1999). Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids, 13: 275-283.
  • Ditzel, F. I., Prestes, E., Carvalho, B. M., Demiate, I. M. and Pinheiro, L. A. (2017). Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydrate Polymers, 157: 1577-1585.
  • Dorez, G., Ferry, L., Sonnier, R., Taguet, A. and Lopez-Cuesta, J. M. (2014). Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 107: 323-331.
  • Ersus, S. and Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Enginnering, 80: 805-812.
  • Frone, A. N., Chiulan, I., Panaitescu, D. M., Nicolae, C. A., Ghiuera, M. and Galan, A. M. (2017). Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Materials Letters, 194: 160-163.
  • Ghaemi, F., Abdullah, L. C. and Ariffin, H. (2019). Lignocellulose structure and the effect on nanocellulose production. 17-30, Lignocellulose for Future Bioeconomy, Ariffin, H., Sapuan, S.M. and Hassan, M.A. (Eds.), Elsevier, Amsterdam, 360 p.
  • Henrique, M. A., Silverio, H. A., Neto, W. P. F. and Pasquini, D. (2013), Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. Journal of Environmental Management, 121: 202-209.
  • Impoolsup, T., Chiewchan, N. and Devahastin, S. (2020). On the use of microwave pretreatment to assist zero-waste chemical-free production process of nanofibrillated cellulose from lime residue. Carbohydrate Polymers, 230: 115630.
  • Islam, S., Kao, N., Bhattacharya, S. N., Gupta, R. and Choi, H. J. (2018). Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production. Chinese Journal of Chemical Engineering, 26: 465-476.
  • Johar, N., Ahmad, I. and Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37: 93-99.
  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. and Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie İnternational Edition Abbreviation, 50: 5438-5466.
  • Krishania, M., Kumar, V. and Sangwan, R. S. (2018). Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresource Technology Reports, 1: 89-93.
  • Kumar, A., Negi, Y. S., Choudhary, V. and Bhardwaj, N. K. (2014). Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2(1): 1-8.
  • Le Man, H., Behera, S. K. and Park, H. S. (2010). Optimization of operational parameters for ethanol production from Korean food waste leachate. International Journal of Environmental Science & Technology, 7(1): 157-164.
  • Liu, K.X., Li, H.Q., Zhang, J., Zhang, Z.G. and Xu, J. (2016). The effect of non-structural components and lignin on hemicellulose extraction, Bioresource Technology, 214: 755-760.
  • Melikoğlu, A. Y., Bilek, S. E. and Cesur, S. (2019). Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydrate polymers, 215: 330-337.
  • Melikoğlu, A. Y., Tekin, İ., Hayatioğlu, N. and Ersus, S. (2023). Development of environmentally friendly composite packaging films from safflower (Carthamus tinctorius L.) plant wastes. Food Bioscience, 55: 102991.
  • Myers, R. H., Montgomery, D. C. and Anderson-Cook, C. M. (2009). Response Surface Methodology. Hoboken, New Jersey: John Wiley & Sons, Inc, 20, 38-44.
  • Nawirska, A. and Kwasniewska, M. (2005). Dietary fibre fractions from fruit and vegetable processing waste. Food Chemistry, 91: 221-225.
  • Owolabi, R. U., Usman, M. A. and Kehinde, A. J. (2018). Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology. Journal of King Saud University-Engineering Sciences, 30(1): 22-30.
  • Pacaphol, K. and Aht-Ong, D. (2017). Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water. Journal of Cleaner Production, 142: 1283-1295.
  • Perez, S. and Mazeau, K. (2005). Conformations, structures, and morphologies of celluloses. Polysaccharides – Structural Diversity and Functional Versatility, 2: 41-68.
  • Qazanfarzadeh, Z. and Kadivar, M. (2016). Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. International Journal of Biological Macromolecules, 91: 1134-1140.
  • Rani, B. and Kawatra, A. (1994). Fibre constituents of some foods. Plant Foods for Human Nutrition, 45: 343-347.
  • Rannou, C., Queveau, D., Beaumal, V., David-Briand, E., Le Borgne, C., Meynier, A., Anton, M., Prost, C., Schuck, P. and Loisel, C. (2015). Effect of spray-drying and storage conditions on the physical and functional properties of standard and n3 enriched egg yolk powders. Journal of Food Engineering, 154: 58-68.
  • Rheem, S., Rheem, I. and Oh, S. (2017). Response Surface Methodology Using a fullest balanced model: A re-analysis of a dataset in the Korean Journal for Food Science of Animal Resources. Korean Journal for Food Science of Animal Resources, 37(1): 139.
  • Rodsamran, P. and Sothornvit, R. (2015). Renewable cellulose source: isolation and characterisation of cellulose from rice stubble residues. International Journal of Food Science and Technology, 50: 1953-1959.
  • Sharma, K.D., Karki, S., Thakur, N.S. and Attri, S. (2012). Chemical composition, functional properties, and processing of carrot—a review, Journal of Food Science and Technology, 49(1): 22-32.
  • Singh, J.P., Kaur, A., Shevkani, K. and Singh, N. (2016). Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. Journal of Food Science and Technology, 53(11): 4056-4066.
  • Smeriglio, A., Denaro, M., Barreca, D., D’Angelo, V., Germano, M.P. and Trombetta, D. (2018). Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia, 124: 49-57.
  • Smyth, M., Garcia, A., Rader, C., Foster, E.J. and Bras, J. (2017). Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Industrial Crops and Products, 108: 257-266.
  • Sucheta, Misra, N.N. and Yadav, S.K. (2020). Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocolloids, 102: 105592.
  • Szymanska-Chargot, M., Chylinska, M., Gdula, K., Koziol, A. and Zdunek, A. (2017). Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers, 9(10): 1-16.
  • Szymanska-Chargot, M., Ciesla, J., Chylinska, M., Gdula, K., Pieczywek, P.M., Koziol, A., Cieslak, K.J. and Zdunek, A. (2018). Effect of ultrasonication on physicochemical properties of apple based nanocellulose-calcium carbonate composites. Cellulose, 25: 4603-4621.
  • Tekin, İ., Özcan, K. and Ersus, S. (2023). Optimization of ionic gelling encapsulation of red beet (Beta vulgaris L.) juice concentrate and stability of betalains. Biocatalysis and Agricultural Biotechnology, 51: 102774.
  • Tian, D., Chandra, R. P., Lee, J. S., Lu, C. and Saddler, J. N. (2017). A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnology for Biofuels, 10: 1-10.
  • Toews, R. and Wang, N. (2013). Physicochemical and functional properties of protein concentrate from pulses. Food Research International, 52(2): 445-451.
  • Uçan Türkmen, F., Mercimek Takcı, H.A., Özmermer, S., Bozkurt, Y., Güneri, A. and Elagöz, Z. (2018). Determination of the influences of microwave and pasteurization applications on quality parameters of black carrot. Harran Tarım ve Gıda Bilimleri Dergisi, 22(2): 196-206 (In Turkish).
  • Ünal, M.Ü. and Bellur, E. (2009). Extraction and characterization of pectin methylesterase from black carrot (Daucus carota L.). Food Chemistry, 116: 836-840.
  • Vanderfleet, O. M., Reid, M. S., Bras, J., Heux, L., Godoy-Vargas, J., Panga, M. K. and Cranston, E. D. (2019). Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose, 26: 507-528.
  • Wang, H., Zhang, X., Jiang, Z., Li, W. and Yu, Y. (2015). A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens). Industrial Crops and Products, 71: 80-88.
  • Wartelle, L.H. and Marshall, W.E. (2006). Quaternized agricultural by-products as anion exchange resins. Journal of Environmental Management, 78: 157-162. Yu, X., Jiang, Y., Wu, Q., Wei, Z., Lin, X. and Chen, Y. (2021). Preparation and characterization of cellulose nanocrystal extraction from Pennisetum hydridum fertilized by municipal sewage sludge via sulfuric acid hydrolysis. Frontiers in Energy Research, 9: 774783.

Optimization of Cellulose Extraction Parameters and Production of Nanocellulose from Black Carrot Juice Wastes

Year 2024, , 547 - 560, 13.03.2024
https://doi.org/10.33462/jotaf.1326627

Abstract

Agricultural wastes are abundant worldwide with increased production and consumption activities as a result of human population growth. Waste recycling processes, which are important to support sustainable production, remain popular due to the increasing amount of agricultural waste. In particular, there are various studies on the recovery of valuable components from waste. In this context, the recovery of cellulose and nanocellulose from waste, which has the potential to be used and applied in many sectors, especially in food, draws attention. Although black carrot juice waste, which is one of the important agricultural wastes, is frequently used in the production of natural colorants, it was used for the production of cellulose and nanocellulose in this study due to its high cellulose content. Response Surface Method-Central Composite Design was used to improve the alkaline extraction conditions of cellulose for the optimum yield and whiteness index by using process parameters of NaOH concentration (2–12%), process temperature (25–110 °C), and time (60–240 min). The optimum process parameters were determined as the NaOH concentration (7.06%), process temperature (44.83°C), and time (114.21 min) for alkaline extraction of cellulose from black carrot juice waste where the yield of cellulose was 22.90±2.48%, and whiteness index was 60.32±0.07%. Nanocellulose was produced from cellulose obtained from black carrot juice waste by acidic hydrolysis using 25% H2SO4. Nanocellulose yield and whiteness index were found as 15.76±0.16% and 58.77±0.26% respectively. The average diameter (61±2.89 nm) and length (281±18.50 nm) of the nanocellulose were determined by Atomic Force Microscopy (AFM). As a result of the Fourier Transform Infrared (FTIR) spectroscopy, it was determined that non-cellulosic components were removed.

References

  • Ağçam, E. and Akyıldız, A. (2015). Effects of Different Solvents And Acid Consantrations On Extraction Of Anthocyanins From Black Carrot Pomace. Gıda, 40(3): 149-156 (In Turkish).
  • Akhtar, S., Rauf, A., Imran, M., Qamar, M., Rıaz, M. and Mubarak, M.S. (2017). Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends in Food Science and Technology, 66: 36-47.
  • Aksoy, M., ÇELİK, A., Mahmut, D. O. K., Yücel, C. and Aydin, K. (2023). Determination of cellulosic bioethanol yield of sweet sorghum genotypes grown under Cukurova Conditions. Journal of Tekirdag Agricultural Faculty, 20(1): 61-70 (In Turkish).
  • Albaş, M. G., Gürbüz, B., Bölük, E., Atik, D. S., Velioglu, M. and Palabiyik, İ. (2022). The effect of lactic acid based propolis addition on the shelf life of fresh strawberry juice. Journal of Tekirdag Agricultural Faculty, 19(4): 788-797 (In Turkish).
  • AOAC (1990). Official Methods of Analysis of the AOAC, Volume 2 (No. Ed. 15), Association of Official Analytical Chemists Inc.
  • Arscott, S. and Tanumihardjo, S. A. (2010). Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Comprehensive Reviews in Food Science and Food Safety, 9(2): 223-239.
  • Behera, S. K., Meena, H., Chakraborty, S. and Meikap, B. C. (2018). Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal, International Journal of Mining Science and Technology, 28(4): 621-629.
  • Borges de Oliveira, F., Bras, J., Pimenta, M. T. B., Aprigio da Silva Curvelo, A. and Belgacem, M. N. (2016). Production of cellulose nanocrystals from sugarcane bagasse fibersand pith. Industrial Crops and Products, 93: 48-57.
  • Börjesson, M. and Westman, G. (2015). Crystalline Nanocellulose — Preparation, Modification, And Properties. 159-191, Cellulose - Fundamental Aspects and Current Trends, Matheus Poletto (Ed.), IntechOpen, England, 284.
  • Cemeroğlu, B. (2013). Food Analysis, Food Technology Association Publications, Ankara (In Turkish). Chirayil, C. J., Joy, J., Mathew, L., Mozetic, M., Koetz, J. and Thomas, S. (2014). Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products, 59: 27-34.
  • Collazo-Bigliardi, S., Ortega-Toro, R. and Boix, A.C. (2018). Isolation and characterization of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 191: 205-215.
  • Davoudpour, Y., Hossain, S., Abdul Khalil, H. P. S., Mohammad Haafiz, M. K., Mohd Ishak, Z. A., Hassan, A. and Sarker, Z. I. (2015). Optimization of high-pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology. Industrial Crops and Products, 74: 381-387.
  • Değermenci, G. D., Değermenci, N., Ayvaoğlu, V., Durmaz, E., Çakır, D. and Akan, E. (2019). Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies. Journal of Cleaner Production, 225: 1220-1229.
  • Demir, D. (2010). Effect of drying and various pre-drying blanching treatments on antioxidant compounds from black carrot. (MSc. Thesis) Selçuk University Institute of Science, Konya, Türkiye.
  • Dinand, E., Chanzy, H. and Vignon, M. R. (1999). Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids, 13: 275-283.
  • Ditzel, F. I., Prestes, E., Carvalho, B. M., Demiate, I. M. and Pinheiro, L. A. (2017). Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydrate Polymers, 157: 1577-1585.
  • Dorez, G., Ferry, L., Sonnier, R., Taguet, A. and Lopez-Cuesta, J. M. (2014). Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 107: 323-331.
  • Ersus, S. and Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Enginnering, 80: 805-812.
  • Frone, A. N., Chiulan, I., Panaitescu, D. M., Nicolae, C. A., Ghiuera, M. and Galan, A. M. (2017). Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Materials Letters, 194: 160-163.
  • Ghaemi, F., Abdullah, L. C. and Ariffin, H. (2019). Lignocellulose structure and the effect on nanocellulose production. 17-30, Lignocellulose for Future Bioeconomy, Ariffin, H., Sapuan, S.M. and Hassan, M.A. (Eds.), Elsevier, Amsterdam, 360 p.
  • Henrique, M. A., Silverio, H. A., Neto, W. P. F. and Pasquini, D. (2013), Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. Journal of Environmental Management, 121: 202-209.
  • Impoolsup, T., Chiewchan, N. and Devahastin, S. (2020). On the use of microwave pretreatment to assist zero-waste chemical-free production process of nanofibrillated cellulose from lime residue. Carbohydrate Polymers, 230: 115630.
  • Islam, S., Kao, N., Bhattacharya, S. N., Gupta, R. and Choi, H. J. (2018). Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production. Chinese Journal of Chemical Engineering, 26: 465-476.
  • Johar, N., Ahmad, I. and Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37: 93-99.
  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. and Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie İnternational Edition Abbreviation, 50: 5438-5466.
  • Krishania, M., Kumar, V. and Sangwan, R. S. (2018). Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresource Technology Reports, 1: 89-93.
  • Kumar, A., Negi, Y. S., Choudhary, V. and Bhardwaj, N. K. (2014). Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2(1): 1-8.
  • Le Man, H., Behera, S. K. and Park, H. S. (2010). Optimization of operational parameters for ethanol production from Korean food waste leachate. International Journal of Environmental Science & Technology, 7(1): 157-164.
  • Liu, K.X., Li, H.Q., Zhang, J., Zhang, Z.G. and Xu, J. (2016). The effect of non-structural components and lignin on hemicellulose extraction, Bioresource Technology, 214: 755-760.
  • Melikoğlu, A. Y., Bilek, S. E. and Cesur, S. (2019). Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydrate polymers, 215: 330-337.
  • Melikoğlu, A. Y., Tekin, İ., Hayatioğlu, N. and Ersus, S. (2023). Development of environmentally friendly composite packaging films from safflower (Carthamus tinctorius L.) plant wastes. Food Bioscience, 55: 102991.
  • Myers, R. H., Montgomery, D. C. and Anderson-Cook, C. M. (2009). Response Surface Methodology. Hoboken, New Jersey: John Wiley & Sons, Inc, 20, 38-44.
  • Nawirska, A. and Kwasniewska, M. (2005). Dietary fibre fractions from fruit and vegetable processing waste. Food Chemistry, 91: 221-225.
  • Owolabi, R. U., Usman, M. A. and Kehinde, A. J. (2018). Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology. Journal of King Saud University-Engineering Sciences, 30(1): 22-30.
  • Pacaphol, K. and Aht-Ong, D. (2017). Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water. Journal of Cleaner Production, 142: 1283-1295.
  • Perez, S. and Mazeau, K. (2005). Conformations, structures, and morphologies of celluloses. Polysaccharides – Structural Diversity and Functional Versatility, 2: 41-68.
  • Qazanfarzadeh, Z. and Kadivar, M. (2016). Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. International Journal of Biological Macromolecules, 91: 1134-1140.
  • Rani, B. and Kawatra, A. (1994). Fibre constituents of some foods. Plant Foods for Human Nutrition, 45: 343-347.
  • Rannou, C., Queveau, D., Beaumal, V., David-Briand, E., Le Borgne, C., Meynier, A., Anton, M., Prost, C., Schuck, P. and Loisel, C. (2015). Effect of spray-drying and storage conditions on the physical and functional properties of standard and n3 enriched egg yolk powders. Journal of Food Engineering, 154: 58-68.
  • Rheem, S., Rheem, I. and Oh, S. (2017). Response Surface Methodology Using a fullest balanced model: A re-analysis of a dataset in the Korean Journal for Food Science of Animal Resources. Korean Journal for Food Science of Animal Resources, 37(1): 139.
  • Rodsamran, P. and Sothornvit, R. (2015). Renewable cellulose source: isolation and characterisation of cellulose from rice stubble residues. International Journal of Food Science and Technology, 50: 1953-1959.
  • Sharma, K.D., Karki, S., Thakur, N.S. and Attri, S. (2012). Chemical composition, functional properties, and processing of carrot—a review, Journal of Food Science and Technology, 49(1): 22-32.
  • Singh, J.P., Kaur, A., Shevkani, K. and Singh, N. (2016). Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. Journal of Food Science and Technology, 53(11): 4056-4066.
  • Smeriglio, A., Denaro, M., Barreca, D., D’Angelo, V., Germano, M.P. and Trombetta, D. (2018). Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia, 124: 49-57.
  • Smyth, M., Garcia, A., Rader, C., Foster, E.J. and Bras, J. (2017). Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Industrial Crops and Products, 108: 257-266.
  • Sucheta, Misra, N.N. and Yadav, S.K. (2020). Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocolloids, 102: 105592.
  • Szymanska-Chargot, M., Chylinska, M., Gdula, K., Koziol, A. and Zdunek, A. (2017). Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers, 9(10): 1-16.
  • Szymanska-Chargot, M., Ciesla, J., Chylinska, M., Gdula, K., Pieczywek, P.M., Koziol, A., Cieslak, K.J. and Zdunek, A. (2018). Effect of ultrasonication on physicochemical properties of apple based nanocellulose-calcium carbonate composites. Cellulose, 25: 4603-4621.
  • Tekin, İ., Özcan, K. and Ersus, S. (2023). Optimization of ionic gelling encapsulation of red beet (Beta vulgaris L.) juice concentrate and stability of betalains. Biocatalysis and Agricultural Biotechnology, 51: 102774.
  • Tian, D., Chandra, R. P., Lee, J. S., Lu, C. and Saddler, J. N. (2017). A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnology for Biofuels, 10: 1-10.
  • Toews, R. and Wang, N. (2013). Physicochemical and functional properties of protein concentrate from pulses. Food Research International, 52(2): 445-451.
  • Uçan Türkmen, F., Mercimek Takcı, H.A., Özmermer, S., Bozkurt, Y., Güneri, A. and Elagöz, Z. (2018). Determination of the influences of microwave and pasteurization applications on quality parameters of black carrot. Harran Tarım ve Gıda Bilimleri Dergisi, 22(2): 196-206 (In Turkish).
  • Ünal, M.Ü. and Bellur, E. (2009). Extraction and characterization of pectin methylesterase from black carrot (Daucus carota L.). Food Chemistry, 116: 836-840.
  • Vanderfleet, O. M., Reid, M. S., Bras, J., Heux, L., Godoy-Vargas, J., Panga, M. K. and Cranston, E. D. (2019). Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose, 26: 507-528.
  • Wang, H., Zhang, X., Jiang, Z., Li, W. and Yu, Y. (2015). A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens). Industrial Crops and Products, 71: 80-88.
  • Wartelle, L.H. and Marshall, W.E. (2006). Quaternized agricultural by-products as anion exchange resins. Journal of Environmental Management, 78: 157-162. Yu, X., Jiang, Y., Wu, Q., Wei, Z., Lin, X. and Chen, Y. (2021). Preparation and characterization of cellulose nanocrystal extraction from Pennisetum hydridum fertilized by municipal sewage sludge via sulfuric acid hydrolysis. Frontiers in Energy Research, 9: 774783.
There are 56 citations in total.

Details

Primary Language English
Subjects Food Technology, Fruit-Vegetables Technology, Food Sciences (Other)
Journal Section Articles
Authors

Nergiz Hayatioğlu 0000-0003-2944-2657

İdil Tekin 0000-0001-6494-7226

Seda Ersus 0000-0003-0475-4099

Early Pub Date March 5, 2024
Publication Date March 13, 2024
Submission Date July 12, 2023
Acceptance Date October 19, 2023
Published in Issue Year 2024

Cite

APA Hayatioğlu, N., Tekin, İ., & Ersus, S. (2024). Optimization of Cellulose Extraction Parameters and Production of Nanocellulose from Black Carrot Juice Wastes. Tekirdağ Ziraat Fakültesi Dergisi, 21(2), 547-560. https://doi.org/10.33462/jotaf.1326627
AMA Hayatioğlu N, Tekin İ, Ersus S. Optimization of Cellulose Extraction Parameters and Production of Nanocellulose from Black Carrot Juice Wastes. JOTAF. March 2024;21(2):547-560. doi:10.33462/jotaf.1326627
Chicago Hayatioğlu, Nergiz, İdil Tekin, and Seda Ersus. “Optimization of Cellulose Extraction Parameters and Production of Nanocellulose from Black Carrot Juice Wastes”. Tekirdağ Ziraat Fakültesi Dergisi 21, no. 2 (March 2024): 547-60. https://doi.org/10.33462/jotaf.1326627.
EndNote Hayatioğlu N, Tekin İ, Ersus S (March 1, 2024) Optimization of Cellulose Extraction Parameters and Production of Nanocellulose from Black Carrot Juice Wastes. Tekirdağ Ziraat Fakültesi Dergisi 21 2 547–560.
IEEE N. Hayatioğlu, İ. Tekin, and S. Ersus, “Optimization of Cellulose Extraction Parameters and Production of Nanocellulose from Black Carrot Juice Wastes”, JOTAF, vol. 21, no. 2, pp. 547–560, 2024, doi: 10.33462/jotaf.1326627.
ISNAD Hayatioğlu, Nergiz et al. “Optimization of Cellulose Extraction Parameters and Production of Nanocellulose from Black Carrot Juice Wastes”. Tekirdağ Ziraat Fakültesi Dergisi 21/2 (March 2024), 547-560. https://doi.org/10.33462/jotaf.1326627.
JAMA Hayatioğlu N, Tekin İ, Ersus S. Optimization of Cellulose Extraction Parameters and Production of Nanocellulose from Black Carrot Juice Wastes. JOTAF. 2024;21:547–560.
MLA Hayatioğlu, Nergiz et al. “Optimization of Cellulose Extraction Parameters and Production of Nanocellulose from Black Carrot Juice Wastes”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 21, no. 2, 2024, pp. 547-60, doi:10.33462/jotaf.1326627.
Vancouver Hayatioğlu N, Tekin İ, Ersus S. Optimization of Cellulose Extraction Parameters and Production of Nanocellulose from Black Carrot Juice Wastes. JOTAF. 2024;21(2):547-60.