Research Article
BibTex RIS Cite

Use of Solar Panel System in Vermicompost (Worm Manure) Production Facilities as Source of Energy

Year 2021, , 91 - 97, 30.12.2020
https://doi.org/10.33462/jotaf.726165

Abstract

Agro-chemicals significantly improve quality and crop yield in agriculture and plant production however excessive use of these agro-chemicals will cause severe environmental problems and health conditions in the following years. Furthermore, solid organic wastes and residues have become environmental concerns due to rapid development of industry and population growth. Therefore, vermicompost (worm manure) manure might have a key position among organic-based alternative products that might improve sustainable and organic agriculture models and replace chemical fertilizers as well as pesticides. Production and use of vermicompost (worm manure) might be an effective option for solving this problem.
Electric energy is the most commonly used for production of vermicompost. The location of vermicompost production facility must be illuminated at all times. In dark places, the worms move on top of the organic substance and the worms dry and die there. Thus, the production facility must have electricity at all times. This energy might be supplied with solar panel systems. This method will make production of manures more cost-effective.
In order for a four-unit vermicompost production facility with 15.9 m length to operate effectively, a solar panel such as 4 kWh, which is larger than the calculated 3.23 kWh, is needed. Sufficient amount of energy cannot be generated with the system due to reasons such as dirty panel glasses, adverse weather conditions such as cloudiness and rain, indirect sunrays in the morning and evening and losses. This is why an energy system greater than the energy demand must be preferred. Energy remaining from the system can be stored in batteries and used later. Furthermore, remaining energy might be used for covering other needs of the vermicompost facility and this will reduce energy costs of the facility.
In Turkey, solar panels might be used in every region to supply sufficient electric power. Vermicompost facilities established for this purpose must be lighted at all times and this shows that use of solar panel system will be suitable for production. A material portion of electricity demand in the production facility can be supplied with green energy and fertilizer production will be more cost effective.

References

  • Anonymous, 2019a. www.elektrikport.com
  • Anonymous, 2019b. www.gunesenerjisipanelleri.net
  • Anonymous, 2019c. www.rhs.com.tr
  • Anonymous, 1993. The Greenhouse climate handbook. ACME Engineering and Manufacturing Corp. Box 978. Muskagee, OK 74402.
  • Anonymous, 1992. Vermigro premium earthworm soil product, sold by canyon recyling, San Diego, Ca. worm watch, Education Department of South Australia.
  • Baier-Anderson, C., Anderson, R.S. (2000). The effects of chlorothalonil on oyster hemocyte activation: phagocytosis, reduced pyridine nucleotides, and reactive oxygen species production. Environmental Research, 83(1):72-78.
  • Broun, A.L., Supkoff, D.M. (1994). Options to methyl bromide for the control of soil-borne diseases and pests in California with reference to the Netherlands. Pest Management Analysis and Planning Program. State of California, Environmental Monitoring and Pest Management Branch. California, 52 pp.
  • Çakmakçı, R., Dönmez, M.F., Canpolat, M., Şahin, F. (2005). In greenhouse and different field conditions, the effect of the plant growth promoting bacteria on plant growth and soil properties. 6th Turkish Field Crops Congress, Antalya, 45-50. (in Turkish)
  • Delen, N., Durmuşoğlu, E., Güncan, A., Güngör, N., Turgut, C., Burçak, A. (2005). Problems of pesticide use in Turkey, reduction of susceptibility in residues and organisms. Turkey Agricultural Engineering Sixth Technical Congress, 3-7 January, 629-648. (in Turkish)
  • Dominguez, J., Edwards, C.A., Subler, S. (1997). A comparison of vermicomposting and composting. Biocycle, 38(4): 57-59.
  • Eker, M. (2016). The Research of Effect to Growth of Different Outdoor Ornamental Plants of Vermicompost and Other Some Organic Fertilizer. MSc. thesis, Namık Kemal University, Graduate School of Natural and Applied Science, Tekirdağ, 56p. (in Turkish)
  • Grӓtzel, M. (2009). Recent advences in sensitized mesoscopic solar cell. Accounts of Chemical Research, 42(11): 1788-1798.
  • Güngör, A., Hepbaşlı, A., Günerhan, H. (2014). Experimental investigation of the use of gas driven heat pumps in drying. Installation Engineering, 142: 32-41. (in Turkish)
  • Hadar, Y. (1991). Control of soil-borne diseases using suppressive compost in container media. Phytoparasitica, 19(2):167.
  • Hoitink, H.A.J., Schmitthenner, A.F., Herr, L.J. (1975). Composted bark for control of root rot in ornamentals. Ohio Reporter, 60: 25-26.
  • Kara, N., Baydar, H., Kayaalp, Ö., Boyar, S. and Bayhan, A. (2014). Effects of drying in sun and shade on essential oil content and composition of hyssop (Hyssopus officinalis L.). Süleyman Demirel University Journal of Natural and Applied Science, 18(1): 85-90. (in Turkish)
  • Kitiş, Y.E. (2012). What is solarization? How is it applied? Journal of Agricultural, 10: 34-37. (in Turkish)
  • Köroğlu, T., Teke, A., Bayındır, K.Ç., Tümay, M. (2010). Design of solar panel systems. Journal of Electrical Engineering, 439:98-104. (in Turkish)
  • Küsek, G., Öztürk, H.H., Akdemir, Ş. (2016). Techno-economic feasibility of electricity generation by solar energy in agricultural enterprises. 13.National Cogress on Agricultural Structures and Irrigation, 12-15 April 2016, Antalya, 127-136. (in Turkish)
  • Logsdon, G. (1994). Worlwide progress in vermicomposting: earthworms and composting. Biocycle, 35: 63-65.
  • Özkan, B., Vuruş-Akçagöz, H., Karadeniz, C.F. (2003). Producer attitudes and behaviours towards pesticide use in citrus production in Antalya Province. Anadolu Journal of AARI, 13(2): 103-116. (in Turkish)
  • Polatçı, H., Tarhan, S. (2009). The effects of various drying methods on the drying time and quality of basil (ocimum basilicum). GOU Journal of Agricultural Faculty, 26(1): 61-70. (in Turkish)
  • Saber, M.S.M. (2001). Clean biotechnology for sustainable farming. Engineering in Life Sciences, 1(6): 217-223.
  • Schuman, S.H., Simpson, W. (1997). A clinical historical overview of pesticide health issues. Occup. Med-State of the Art Rev., 12: 203-207.
  • Şimşek-Erşahin, Y. (2007). Acquiring vermicompost products and their application alternatives through agricultural production. Gaziosmanpaşa University Journal of Agricultural Faculty, 24(2): 99-107. (in Turkish)
  • Tutar, U. (2013). Investigation of antimicrobial activity on some plant pathogens of obtained from the earthworm’s vermicompost. Cumhuriyet University Faculty of Science Journal (CSJ), 34(2): 1-12. (in Turkish)
  • Yüksel, A.N., Yüksel, E. (2012). Greenhouse construction technique. Hasad Publishing, İstanbul:123-126. (in Turkish)
  • Yüksel, A.N., Yüksel-Türkboyları, E. (2018). Using the photovoltaic cells for ventilation and cooling of the animals barns. 1st International 14th National Congress on Agricultural Structures on Irrigation (ICASI 2018), 26-28 Septembe,r Antalya, 49-55.

Use of Solar Panel System in Vermicompost (Worm Manure) Production Facilities as Source of Energy

Year 2021, , 91 - 97, 30.12.2020
https://doi.org/10.33462/jotaf.726165

Abstract

Tarımsal üretimin bitkisel üretim ile ilgili kısmında, kaliteli ve yeterli verim elde etmek amacıyla agro-kimyasal maddelerin aşırı kullanımı sonucunda zamanla önemli çevre ve sağlık sorunlarının meydana gelmesine neden olmuştur. Ayrıca hızlı endüstriyel gelişme ve nüfus artışı ile katı organik atık ve artıklarda çevre sorunu olarak ortaya çıkmıştır. Bu nedenle sürdürülebilir ve organik tarım modellerini geliştirerek, kimyasal gübre ve pestisitlerin yerini alabilecek, organik bazlı alternatif ürünler içerisinde vermikompost (solucan) gübresi önemli bir yer alabilir. Bu sorunların çözümünde vermikompost (solucan) gübresinin üretimi ve kullanımı etkili olabilir.
Vermikompost gübresinin üretimi sırasında, elektrik enerjisi kullanılmaktadır. Vermikompost üretim tesisinin bulunduğu ortamının sürekli olarak aydınlatılması gerekmektedir. Zira karanlık ortamda solucanlar, organik maddenin üstüne çıkmakta ve burada kuruyarak ölmektedirler. Bu nedenle, üretim tesisinde elektrik hiç kesilmemelidir. Bu üretim maliyetlerini arttırmaktadır. Bunu azaltmanın yollarından biri elektrik enerjisi yerine güneş panel sistemlerinin kullanılmasıdır.
Her bir gübre üretim ünitesinin uzunluğu 15.9 m olan, dört üniteli bir vermikompost üretim tesisinin verimli bir şekilde çalışabilmesi için, hesaplanan 3.23 kWh’ten daha büyük 4 kWh gibi bir güneş paneli sistemine ihtiyaç vardır. Panel camlarının kirlenmesi, bulutluluk ve yağış gibi olumsuz hava koşulları, güneş ışınlarının sabah ve akşam dik gelmemesi ve kayıplar gibi nedenlerle, sistemde yeteri kadar enerji üretilmez. Bu nedenle, ihtiyaçtan daha büyük bir enerji sistemi tercih edilmelidir. Sistemden artan enerji daha sonra kullanılmak üzere, akülerde depo edilebilir. Aynı zamanda fazla enerji vermikompost işletmesinin diğer ihtiyaçlarında kullanılarak, işletmenin enerji giderlerini azaltır.
Güneş panelleri, Türkiye koşullarında her bölgede kullanılarak yeterli elektrik enerjisi üretebilir. Bu amaçla kurulan vermikompost tesislerinde özellikle aydınlatmanın sürekli olması zorunluluğu, üretimde güneş paneli sisteminin kullanımının uygun olacağını göstermektedir. Üretim tesisinin elektrik ihtiyacının önemli bir kısmının, yeşil enerji ile karşılanması ile gübrenin üretimi daha ekonomik olur.

References

  • Anonymous, 2019a. www.elektrikport.com
  • Anonymous, 2019b. www.gunesenerjisipanelleri.net
  • Anonymous, 2019c. www.rhs.com.tr
  • Anonymous, 1993. The Greenhouse climate handbook. ACME Engineering and Manufacturing Corp. Box 978. Muskagee, OK 74402.
  • Anonymous, 1992. Vermigro premium earthworm soil product, sold by canyon recyling, San Diego, Ca. worm watch, Education Department of South Australia.
  • Baier-Anderson, C., Anderson, R.S. (2000). The effects of chlorothalonil on oyster hemocyte activation: phagocytosis, reduced pyridine nucleotides, and reactive oxygen species production. Environmental Research, 83(1):72-78.
  • Broun, A.L., Supkoff, D.M. (1994). Options to methyl bromide for the control of soil-borne diseases and pests in California with reference to the Netherlands. Pest Management Analysis and Planning Program. State of California, Environmental Monitoring and Pest Management Branch. California, 52 pp.
  • Çakmakçı, R., Dönmez, M.F., Canpolat, M., Şahin, F. (2005). In greenhouse and different field conditions, the effect of the plant growth promoting bacteria on plant growth and soil properties. 6th Turkish Field Crops Congress, Antalya, 45-50. (in Turkish)
  • Delen, N., Durmuşoğlu, E., Güncan, A., Güngör, N., Turgut, C., Burçak, A. (2005). Problems of pesticide use in Turkey, reduction of susceptibility in residues and organisms. Turkey Agricultural Engineering Sixth Technical Congress, 3-7 January, 629-648. (in Turkish)
  • Dominguez, J., Edwards, C.A., Subler, S. (1997). A comparison of vermicomposting and composting. Biocycle, 38(4): 57-59.
  • Eker, M. (2016). The Research of Effect to Growth of Different Outdoor Ornamental Plants of Vermicompost and Other Some Organic Fertilizer. MSc. thesis, Namık Kemal University, Graduate School of Natural and Applied Science, Tekirdağ, 56p. (in Turkish)
  • Grӓtzel, M. (2009). Recent advences in sensitized mesoscopic solar cell. Accounts of Chemical Research, 42(11): 1788-1798.
  • Güngör, A., Hepbaşlı, A., Günerhan, H. (2014). Experimental investigation of the use of gas driven heat pumps in drying. Installation Engineering, 142: 32-41. (in Turkish)
  • Hadar, Y. (1991). Control of soil-borne diseases using suppressive compost in container media. Phytoparasitica, 19(2):167.
  • Hoitink, H.A.J., Schmitthenner, A.F., Herr, L.J. (1975). Composted bark for control of root rot in ornamentals. Ohio Reporter, 60: 25-26.
  • Kara, N., Baydar, H., Kayaalp, Ö., Boyar, S. and Bayhan, A. (2014). Effects of drying in sun and shade on essential oil content and composition of hyssop (Hyssopus officinalis L.). Süleyman Demirel University Journal of Natural and Applied Science, 18(1): 85-90. (in Turkish)
  • Kitiş, Y.E. (2012). What is solarization? How is it applied? Journal of Agricultural, 10: 34-37. (in Turkish)
  • Köroğlu, T., Teke, A., Bayındır, K.Ç., Tümay, M. (2010). Design of solar panel systems. Journal of Electrical Engineering, 439:98-104. (in Turkish)
  • Küsek, G., Öztürk, H.H., Akdemir, Ş. (2016). Techno-economic feasibility of electricity generation by solar energy in agricultural enterprises. 13.National Cogress on Agricultural Structures and Irrigation, 12-15 April 2016, Antalya, 127-136. (in Turkish)
  • Logsdon, G. (1994). Worlwide progress in vermicomposting: earthworms and composting. Biocycle, 35: 63-65.
  • Özkan, B., Vuruş-Akçagöz, H., Karadeniz, C.F. (2003). Producer attitudes and behaviours towards pesticide use in citrus production in Antalya Province. Anadolu Journal of AARI, 13(2): 103-116. (in Turkish)
  • Polatçı, H., Tarhan, S. (2009). The effects of various drying methods on the drying time and quality of basil (ocimum basilicum). GOU Journal of Agricultural Faculty, 26(1): 61-70. (in Turkish)
  • Saber, M.S.M. (2001). Clean biotechnology for sustainable farming. Engineering in Life Sciences, 1(6): 217-223.
  • Schuman, S.H., Simpson, W. (1997). A clinical historical overview of pesticide health issues. Occup. Med-State of the Art Rev., 12: 203-207.
  • Şimşek-Erşahin, Y. (2007). Acquiring vermicompost products and their application alternatives through agricultural production. Gaziosmanpaşa University Journal of Agricultural Faculty, 24(2): 99-107. (in Turkish)
  • Tutar, U. (2013). Investigation of antimicrobial activity on some plant pathogens of obtained from the earthworm’s vermicompost. Cumhuriyet University Faculty of Science Journal (CSJ), 34(2): 1-12. (in Turkish)
  • Yüksel, A.N., Yüksel, E. (2012). Greenhouse construction technique. Hasad Publishing, İstanbul:123-126. (in Turkish)
  • Yüksel, A.N., Yüksel-Türkboyları, E. (2018). Using the photovoltaic cells for ventilation and cooling of the animals barns. 1st International 14th National Congress on Agricultural Structures on Irrigation (ICASI 2018), 26-28 Septembe,r Antalya, 49-55.
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Elif Yüksel 0000-0003-4658-8068

A.nedim Yüksel 0000-0002-0278-7498

Publication Date December 30, 2020
Submission Date April 24, 2020
Acceptance Date November 12, 2020
Published in Issue Year 2021

Cite

APA Yüksel, E., & Yüksel, A. (2020). Use of Solar Panel System in Vermicompost (Worm Manure) Production Facilities as Source of Energy. Tekirdağ Ziraat Fakültesi Dergisi, 18(1), 91-97. https://doi.org/10.33462/jotaf.726165
AMA Yüksel E, Yüksel A. Use of Solar Panel System in Vermicompost (Worm Manure) Production Facilities as Source of Energy. JOTAF. December 2020;18(1):91-97. doi:10.33462/jotaf.726165
Chicago Yüksel, Elif, and A.nedim Yüksel. “Use of Solar Panel System in Vermicompost (Worm Manure) Production Facilities As Source of Energy”. Tekirdağ Ziraat Fakültesi Dergisi 18, no. 1 (December 2020): 91-97. https://doi.org/10.33462/jotaf.726165.
EndNote Yüksel E, Yüksel A (December 1, 2020) Use of Solar Panel System in Vermicompost (Worm Manure) Production Facilities as Source of Energy. Tekirdağ Ziraat Fakültesi Dergisi 18 1 91–97.
IEEE E. Yüksel and A. Yüksel, “Use of Solar Panel System in Vermicompost (Worm Manure) Production Facilities as Source of Energy”, JOTAF, vol. 18, no. 1, pp. 91–97, 2020, doi: 10.33462/jotaf.726165.
ISNAD Yüksel, Elif - Yüksel, A.nedim. “Use of Solar Panel System in Vermicompost (Worm Manure) Production Facilities As Source of Energy”. Tekirdağ Ziraat Fakültesi Dergisi 18/1 (December 2020), 91-97. https://doi.org/10.33462/jotaf.726165.
JAMA Yüksel E, Yüksel A. Use of Solar Panel System in Vermicompost (Worm Manure) Production Facilities as Source of Energy. JOTAF. 2020;18:91–97.
MLA Yüksel, Elif and A.nedim Yüksel. “Use of Solar Panel System in Vermicompost (Worm Manure) Production Facilities As Source of Energy”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 18, no. 1, 2020, pp. 91-97, doi:10.33462/jotaf.726165.
Vancouver Yüksel E, Yüksel A. Use of Solar Panel System in Vermicompost (Worm Manure) Production Facilities as Source of Energy. JOTAF. 2020;18(1):91-7.